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Abstract

In today’s era of abundant textual data on the web, automated clustering into

thematic folders is essential. This thesis extensively explores document clustering

techniques, elucidating their operational frameworks and their main advantages and

disadvantages. Subsequently, three novel algorithms are introduced and compared

with the already existing ones. Initially, foundational tools such as Latent Dirichlet

Allocation (LDA) and the Bootstrap method are presented. Then, the new clustering

algorithms are theoretically delineated. The innovation lies in proposing a novel

"distance" measure based on the p-value of an hypothesis test of the homogeneity of

topic distributions, obtained by LDA, between two documents, mounting on it three

different clustering procedures. The first two directly employs the new dissimilarity

using an hierarchical approach and a fuzzy relational clustering approach while

the other is a test-based approach to clustering, an unprecedented endeavor. The

performance of the clustering methods is then assessed using two benchmark datasets

with comparisons drawn against established methodologies. Finally, agglomerative

hierarchical clustering is applied to analyze thematic changes over three different

years at the CMStatistics conference, providing insightful conclusions.

http://www.cronosaction.com/BoA.php
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Chapter 1

Introduction

I n a world where the number of available web documents is growing at an

exponential rate each day, it is crucial to introduce methods that are effective

for clustering documents into defined "folders". For instance, consider a scenario in

which the objective is to identify all the documents in a database associated with a

specific query (which could be considered as a topic search).

In Chapter 2 the principal methodological approaches in document clustering

are briefly presented, as well as the main clustering techniques used, highlighting

the challenges of clustering in a high dimensional regime with sparse data. Then,

the main similarity measures in the document clustering context and the most

used cluster validity techniques (both internal and external measures) are explored.

The potential need for a new validity index, more specifically made for document

clustering, is also highlighted.

In Chapter 3 the basic idea of the three clustering methods is outlined and the

main tools used to build them are introduced, including the Bootstrap method and

LDA. Following this, the hypothesis test for homogeneity between topic distributions

and the procedure to estimate the p-value is introduced, outlining advantages and

disadvantages of this approach. Finally, the three novel clustering algorithms are

critically presented.

A small-scale application of all the clustering procedures is then conducted on

one benchmark dataset (20 Newsgroups dataset) and on a new one, namely the
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Books of Abstracts (BoAs) dataset. This application includes a comparison of the

three newly defined clustering methods with well-known clustering algorithms from

the literature. The performance of these methods is evaluated using both cluster

validity indices and interpretative analysis. The main drawbacks and advantages of

the new methodologies, as well as potential extensions, are discussed.

In Chapter 4, document clustering is applied to a real case scenario using the

BoAs dataset. Specifically, agglomerative hierarchical clustering is employed for

three different years to identify the main topics of interest, determine if there are

discernible trends over time, and assess which documents belong to specific clusters.

The primary goal is to create "folders" for each year that group documents by their

associated topics.

Aim of the thesis

Before defining the main purposes of this thesis, it is essential to clearly identify

the primary research questions and develop a framework to address them:

• Which are the main document clustering techniques? Which are

their main limitations?

• Is it possible to define a new document clustering scheme that

provides both a methodological and interpretative perspective?

In order to give an answer to the involved questions, firstly the main techniques

in the literature have to be studied into detail in order to understand advantages

and disadvantages. Then, three new methods of document clustering based on the

estimation of the p-value associated with the hypothesis test of homogeneity between

document topic distributions [35] have been discussed.

It should be noted that this is a first attempt to expand the methodological

boundaries of document clustering and this is also an initial idea. Specifically, it is

noteworthy that this is the first instance where LDA is not directly employed for

clustering, as is traditionally done in Mixture Models where each topic is treated as

a cluster.
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A gap between classic techniques based on the Bag-Of-Words (BOW) approach

and those employing embeddings directly have been identified. The attempt to

define a methodology that does not rely on language models but remains somehow

effective has been done.
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Chapter 2

Theoretical Framework

2.1 Literature Review

D ocument clustering stands out as a prominent subject in the realm of Infor-

mation Retrieval (IR), with seminal works by [58, 36] striving to leverage its

application to enhance the precision of retrieval systems. The basic idea is to extract

information from a text, using concepts of Data Mining and then to create clusters,

namely set of documents that share some common characteristics according to some

similarity measure that was previously defined, using concepts of Natural Language

Processing and methodological statistics. Recall that clustering is an unsupervised

learning type of method, meaning that document clustering is significantly different

from document classification due to the fact that usually the labels associated to

each document are unknown a priori. In that field, a wide range of machine learning

techniques have been applied by [33].

The goal of document clustering is to create a partition of documents such

that the intra-cluster similarity is maximized while the inter-cluster similarity is

minimized. This methodology finds extensive applicability across diverse domains,

ranging from large-scale web searching [16] to hierarchical models classifying web

services such as YAHOO using concise descriptors [34]. Furthermore, it plays a

pivotal role in the automatic organization of vast corpora [3]. Notably, the significant

applications of document clustering can be categorized as follows [30]:
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• Similarity: this feature proves invaluable in uncovering documents that

share not just words but also similar conceptual content. For instance, it is

instrumental in conducting a thorough literature review for a thesis, where

understanding the prevalence of specific topics is crucial.

• Organization: in the current era, grappling with the enormous volume

of data necessitates effective organization. Document clustering addresses

this challenge by categorizing large document collections into interpretable

structures, facilitating human comprehension, such as the categorization of

books based on literary genres.

• Duplication: identifying duplicate documents within an extensive collection

is essential. In the context of plagiarism detection in academic works, this

capability is instrumental in gauging the extent of textual overlap in theses or

research papers.

• Recommendation: drawing upon the user’s reading history, the objective is

to suggest content with similar themes, minimizing time wastage and enhancing

user experience.

• Web Search Optimization: clustering significantly contributes to the im-

provement of search engine quality and efficiency. By initially comparing user

queries to clusters rather than directly to individual documents, search results

can be more efficiently organized and retrieved.

From a methodological standpoint, various clustering techniques have been em-

ployed to address the challenges outlined previously. According to [12], unsupervised

document clustering methods can be broadly categorized into two groups, i.e. hard

clustering and soft (fuzzy) clustering. In hard clustering, each document is directly

assigned to one and only one cluster. This results in a set of disjoint clusters, where

documents are exclusively associated with a single cluster. Conversely, in the other

situation, a document can be assigned to multiple clusters. This approach generates

a set of overlapping clusters, where documents may belong to more than one cluster

with a certain membership degree.
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Within the clustering methodology, three distinct approaches are commonly

found. Partitioning algorithms, such as K-Means, attempt to allocate documents

into a fixed number of K clusters. Hierarchical algorithms, such as Bisecting

K-Means [38], aim to create a nested partition of clusters, where each partition of K

clusters is deemed the best given the K − 1 cluster partition. The last one involves

frequent itemset-based clustering, where terms are clustered based on their

frequency and documents are then clustered based on those terms [5].

Another typical approach frequently used is Model-Based clustering [67].

The fundamental idea behind this method is that the population of documents is

not homogeneous; instead, there are distinct sub-populations that govern the data

generative process. The key challenge lies in identifying which mixture model suits

the text data best and determining the appropriate number of mixture components.

Subsequently, an Expectation-Maximization [19] algorithm can be employed to

estimate the parameters. From a practical point of view, one approach proposes to

apply a dimensionality reduction technique before implementing the cluster modeling

[49], while the authors in [65] use a Dirichlet-Multinomial Mixture model to cluster

short texts. Indeed, the most widely utilized technique in this category is the

Gaussian Mixture Model (GMM) [24].

An explored approach involves the use of Density-Based methods. In partic-

ular, it has been already explored a general application to document clustering [15]

as well as a more specific one on Twitter data [28]. Another approach involves con-

structing an undirected weighted graph from the initial corpus and applying spectral

clustering techniques to it [21]. Specifically, the concept of graph partitioning relies

on computing the eigenvectors associated with the graph matrix and subsequently

applying a clustering algorithm within this new subspace.

It is noteworthy to mention that, given the reliance of the algorithm which will

be developed during this thesis on LDA, various papers have explored the use of

clustering methods following LDA. For example, the usage of an ant algorithm by

[52], the application of clustering methods based on LDA to scientific documents [64]

or the employment of a combination of LDA and Word2Vec to cluster documents
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with a small text such as abstracts of papers [40]. Finally, the application of a

hierarchical approach based on a matrix of p-values derived from a two-sample test

to classify ARMA models has been explored by [43].

2.2 Useful tools

After delineating the application domain of document clustering as well as the

basic techniques used, it becomes crucial to intricately present the theoretical tools

that will be important in this thesis. It is imperative to provide a concise overview of

the techniques to be employed. For a more in-depth analysis, readers are encouraged

to refer to the linked papers. While certain topics may initially appear unrelated, it is

in the subsequent Section/Chapter that these elements will be seamlessly integrated

into a unified methodology. As a matter of fact, document clustering is a mix of

different steps and methods and it is noteworthy to mention all of them.

2.2.1 Vector Space Model

Let us introduce some notations that will prove instrumental for subsequent

discussions. A corpus C = {d1, . . . ,dM} can be defined as a collection of documents,

where M is the total number of documents. Subsequently, each individual document

di = {wi1, . . . , windi
} is defined as an ensemble of words, with ndi

denoting the

total number of words within the document di. This representation aligns with

the BOW paradigm, wherein the sequence and semantic relationships between

words are disregarded. This assumption represents the most basic and rudimentary

conceptualization, as it oversimplifies the intricate nature of language. Notably, more

recent language models, such as the one developed by OpenAi [53], have transcended

this elementary framework, adopting more sophisticated and nuanced approaches

that capture the intricacies of semantic relationships and contextual dependencies

among words. Lastly, denote V = {w1, . . . , w|V |} as the vocabulary associated with

the corpus, constituting the set of all the unique words in the corpus.

The Vector Space Model (VSM), conceptualized in the 1960s but formally

articulated in a book in 1983 [59], underpins the representation of each word wl
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(l = 1, . . . , |V |) as a one hot encoded vector. Through this specific encoding, wl is

transformed into a |V |-dimensional vector, wherein wlj equals one exclusively when

it corresponds to the word in position j inside the vocabulary, otherwise it assumes

a value of zero. Consequently, each document di can be depicted as a matrix, where

each row constitutes a one hot encoded vector representing a specific word in the

vocabulary, denoted as di = [wi
1 . . .wi

ndi
] ∈ |V | × ndi

.

A more prevalent representation of a document is the vectorial one, where each

document is encapsulated as a |V |-dimensional vector. In the broader context of VSM,

a corpus comprising M documents with |V | unique terms undergoes transformation

into an M × |V | matrix. Each row within this matrix corresponds to one of the

aforementioned vectors and is commonly referred to as the Document Term

matrix (DTM). Each entry in this matrix represents the weight of the associated

word within the specific document. Notably, at least three distinct weighting schemes

can be defined, though numerous others exist in literature 1 [63]:

1. Binary representation: each document is encoded such that the generic

entry dtij is set to one if the word in position j in the vocabulary is utilized

at least once in the document di, otherwise it is set to zero. This encoding

implies the presence of at least one occurrence of the word within the document,

manifesting as a binary indicator in the corresponding row of the document’s

matrix representation.

2. Term frequency: the generic entry of a document dtij is equal to the number

of occurrences of the word in position j in the vocabulary within the document

di. Essentially, it corresponds to the frequency of the word in the document.

3. Term frequency inverse document frequency: the TF-IDF representa-

tion serves as a refinement of the term frequency scheme by incorporating

considerations regarding the overall corpus. This approach acknowledges the

significance of a word based on both its frequency within a document and its

prevalence across the entire corpus. In fact, the more a word is used within
1The last two methods are within the count BOW (CBOW) approach.
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the corpus, the lower it is the amount of information "owned" by that word.

More into detail:

dtij = tfij ∗ log
(
M

Mj

)

where Mj represents the number of documents including the word in posi-

tion j in the vocabulary. An easy extension of the method aforementioned

involves applying a convex transformation to decrease the emphasis placed

on the frequency of each word. Specifically, the term frequency is replaced

by log
(
tfij + 1

)
, where the plus one is included to prevent the transformation

from resulting in a value of negative infinity.

2.2.2 Text Preprocessing

In the BOW context, before applying whatever algorithm, the crucial step is

document preprocessing [20]. The primary objective of these techniques is to elimi-

nate irrelevant information to facilitate further analysis. The choice of preprocessing

techniques depends on the specific domain of application. For example, in legal con-

texts, numbers may be essential for uniquely identifying laws, whereas in analyzing

political speeches in order to understand the political orientation, numbers may not

provide valuable insights and can be omitted. The key preprocessing techniques

commonly used include:

1) Punctuation and Special Characters: the primary step in any preprocess-

ing procedure is to remove punctuation from text and identify which special

characters ("!&%(). . . ") should be eliminated. For example, in Twitter data,

the symbol "#" is directly associated with hashtags and may hold valuable in-

formation for analysis. Special characters also include URLs or emails. Taking

Twitter data as an example again, it is essential to exclude mentions, which are

words starting with the symbol "@". The rationale behind removing symbols

and punctuation is that words are analyzed individually, making these elements

irrelevant for analysis.

2) Lowercasing: the next common step in preprocessing is to convert all words

to lowercase since it does not affect the meaning of a word. For example, "War"



2.2 Useful tools 10

and "war" carry the same significance, and there is no need to include the same

word multiple times in the dictionary.

3) Tokenization and Stopwords: the tokenization process involves splitting

each word in a text using the white space between words as a delimiter.

Subsequently, stopwords, which are non-significant words in a given language,

are removed from the documents. For most languages, there are one or more

lists of stopwords available (for instance in Italian you can check this list).

4) N-gram: following the concepts outlined in [45], an n-gram is defined as a

sequence of n contiguous tokens. It is crucial to include these expressions in

the vocabulary as they carry significant meaning. Typically, emphasis is placed

on bigrams and trigrams, with a focus on adding the most frequent ones. For

example, terms like "political" and "compass" may seem unrelated individually,

but when considered together, they convey a specific interpretation.

5) Lemmatization & Stemming: the decision regarding the utilization of

either stemming or lemmatization techniques is discretionary and you should

opt for one over the other based on task specific requirements. Stemming

conventionally denotes the process of transforming a token into its root form.

Among the most widely employed algorithms for stemming is the Porter

algorithm [56]. For Italian stemming, the Snowball algorithm serves as a viable

alternative [57]. Conversely, lemmatization entails the transformation of a

word into its lemma, a process intricately linked with part-of-speech tagging.

Generally, it is advisable to start with stemming techniques. Only if the

performance of the model prove unsatisfactory, consideration of lemmatization

becomes pertinent. This recommendation is based on lemmatization’s reliance

on an external vocabulary and its dependence on a model for the assignment

of part-of-speech tags to individual words.

6) Frequent words: another step that can be taken involves deleting very

frequent or rare words. There is no specific rule for this process. Some

approaches involve defining a threshold to remove frequent and rare words,

while others use the frequency of documents containing that word to determine

http://snowball.tartarus.org/algorithms/italian/stop.txt
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which words to delete, typically removing the ones appearing in more than

85 − 95% or less than 0.5 − 1% of documents.

2.2.3 Similarity Measures

In the context of document clustering, selecting an appropriate similarity measure

is a crucial step. This measure enables the determination of similarity or dissimilarity

between documents within a corpus. To compute such similarities, it is imperative

to represent documents as vectors, as for example the TF-IDF representation where

each word in the vocabulary corresponds to a feature. The chosen distance in

order to be a metric should adhere to certain properties. More formally, a distance

function, denoted as D : ℜ|V| × ℜ|V| → ℜ+, is considered a metric if it satisfies the

following criteria when applied to any two documents di and dj within the corpus::

1. non-negativity, D(di,dj) ≥ 0;

2. symmetry, D(di,dj) = D(dj ,di);

3. reflexivity, D(di,di) = 0

4. triangle inequality, D(di,dl) ≤ D(di,dj) +D(dj ,dl)

It’s important to note that a similarity measure assesses the degree of similarity

between two documents and can be viewed as the opposite of a distance function.

Moreover, not all similarity measures possess the properties necessary to be classified

as a metric. Even though there exists different measures [27], the most pertinent

ones are discussed below:

Cosine Similarity: widely utilized in information retrieval due to its inde-

pendence from document length, cosine similarity measures the angle between

two vectors and is bounded within the range of [0, 1], where 1 indicates nearly

coinciding vectors, while 0 indicates perpendicular vectors. It is not a metric

because it does not satisfy the triangle inequality.

cos(di,dj) = ⟨di,dj⟩
|di||dj |

(2.1)



2.2 Useful tools 12

Jaccard (Tanimoto) coefficient: it measures the similarity between two

elements using the ratio between the cardinality of the intersection set and the

cardinality of the union set. It ranges between 0 and 1 and it is a similarity

measure

JC(di,dj) = ⟨di,dj⟩
|di|2|dj |2 − ⟨di,dj⟩

(2.2)

Euclidean Distance: a standard metric extensively used in clustering prob-

lems, satisfying all four metric requirements. Sometimes, the square version is

adopted as well as the norm in Lp, although the first one is not a metric

DE(di,dj) = |di − dj |2 =

 |V |∑
r=1

(dir − djr)2


1
2

(2.3)

Kullback-Leibler divergence [37]: this measure relies on the assumption

that each document is a probability distribution over a space (for example

over the vocabulary space), quantifying the degree of dissimilarity between two

probability distributions. Although not a metric due to its lack of symmetry

and triangle inequality fulfillment, it can be interpreted as the difference

between cross-entropy and document entropy, bounded in ℜ+

KL(di,dj) = E

log
(

di
dj

) =
|V |∑
r=1

dir log
(
dir
djr

) =

=
|V |∑
r=1

(
dir log (dir)

)
−

|V |∑
r=1

(
dir log

(
djr
))

= H(di,dj) −H(di)

(2.4)

Bhattacharyya distance [6]: employed for quantifying divergence between

probability distributions, Bhattacharyya distance is also not a metric due to its

failure to satisfy the triangle inequality. It is bounded in ℜ+ and is zero when

the distributions are identical. It is related to Kullback-Leibler divergence

through the Hellinger distance

B(di,dj) = − log
(
BC(di,dj)

)
= − log

 |V |∑
r=1

(dir ∗ djr)
1
2

 (2.5)
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2.3 Clustering Techniques

Let’s formalize the task. Given a corpus C = {d1, . . . ,dM}, the goal of this

unsupervised method is to partition these documents into clusters in the most

optimal manner. The aim is to ensure that documents within the same cluster exhibit

high similarity (cohesion), while those in different clusters show lower similarity

(separation).

Essentially, the starting point is the representation of documents using VSM.

Ideally, each document clustering technique should begin with a DTM, where words

in the vocabulary act as variables (features), with their frequencies serving as scores.

In this matrix, each document has been normalized to have a unit length, which

means that each document vector has been divided by its norm in order to take into

account the different sizes of documents 2. Formally, for the DTM:

T =
M∑
i=1

|V |∑
j=1

(
dtij − dt·j

)2
=

K∑
k=1

Mk∑
i=1

|V |∑
j=1

(dtkj − dt·j)2 +
K∑
k=1

Mk∑
i=1

|V |∑
j=1

(
dtij − dtkj

)2
=

=
K∑
k=1

|V |∑
j=1

Mk(dtkj − dt·j)2 +
K∑
k=1

Mk∑
i=1

|V |∑
j=1

(
dtij − dtkj

)2
= B +W

(2.6)

where dtkj is the j-th component of the centroid of the cluster k, namely the

mean of the documents inside the cluster. Assuming that the generic cluster k has

size nk, the centroid dtk· =
Mk∑
i=1

dti·/nk.

Based on the above discussion, the objective is to maximize the variance between

clusters or, conversely, minimize the variance within clusters. It’s important to

note that in this context, squared Euclidean distance is generally not considered a

suitable metric; instead, cosine similarity is preferred. To delve further, the distance

between two documents can be defined as follows:

D(di,dj) = 1 − cos
(
di,dj

)
2As a matter of fact, in the upcoming chapters, clustering techniques will be applied to various

representations of documents beyond just their frequency. In these cases, even though normalization

is not necessary, the same reasoning can be applied.
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Three important points can be made. Firstly, alternative dissimilarity measures

can also be used. Secondly, the defined distance remains valid for all other methods

as well. The other one is that intrinsically document clustering can be considered as

an instance of clustering with high dimensional data because the DTM has usually

many features, often exceeding the number of documents. In particular, there are

several problems linked with high dimensional clustering:

• Curse of dimensionality [55]: due to the high dimensionality of the feature

space, distance measures becomes meaningless making it difficult to distinguish

between distant and nearby points;

• Hard conceptualization: visualizing and interpreting units in a high-

dimensional space is challenging.

Thus, before applying clustering techniques which does not rely directly on a

dimensionality reduction technique, is a good idea to apply a transformation to the

DTM in order to reduce the sparsity. Although various transformations exist in

the literature (both linear and nonlinear), the two most used in this context are

Principal Component Analysis (PCA) and Singular Values Decomposition (SVD).

PCA reduces the feature space applying a linear transformation based on the

eigenvalues and eigenvectors associated to the variance and covariance matrix of

the original data. Without going too much into detail, the simplistic idea behind

this method is to find components, defined as a linear combination of the original

features, such that each component (which is indeed defined by the eigenvector) is

orthogonal with respect to the others, the variability (and thus the information)

is maximized and the components are chosen in a sequential way. Furthermore,

the variance of each component is equal to the eigenvalue corresponding to that

eigenvector.

On the other hand, SVD factorizes the original rectangular DTM into three

different components in the following way:

DTM = UDVT
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where U is a M ×M matrix containing the left singular vectors of the DTM, D

is a M × |V | diagonal matrix containing the corresponding singular value in each cell

of the diagonal while V is a |V | × |V | matrix containing the right singular vectors.

The number of non zero singular value is equal to the rank of the DTM (which is M

in this case) and U and V are orthogonal matrices.

2.3.1 Hierarchical methods

The purpose of this technique is to create nested partitions, where, given two

levels of dissimilarity δ1 < δ2, the partition obtained with δ1 is contained in the

partition obtained with δ2. Two different approaches can be employed depending

on the starting point. If the starting point is the trivial partition containing all the

different documents and a split of the previous cluster into two new clusters is done

at each step, a divisive method is applied. In the other case, the method is called

agglomerative. The main focus will be on the latter.

Agglomerative methods tend to produce a continuous sequence of partitions

where similar documents or clusters of documents are merged together at each step.

Specifically, given an M × M dissimilarity matrix, the related algorithm can be

defined as follows:

Step 1. merge the two documents exhibiting the lowest dissimilarity into a cluster.

Compute the dissimilarities between the newly obtained clusters and the

remaining documents, defining an (M − 1) × (M − 1) matrix, where the

dissimilarities between singletons are taken from the previous matrix;

Step l. for l ranging from 2 toM−1, merge the two clusters with the lowest dissimilarity

and reconstruct the new matrix of shape (M − l) × (M − l). The final outcome

is the trivial partition where all documents are within the same cluster.

A natural question arises: how is the dissimilarity between two clusters computed?

While various linkage methods exist, the discussion here is limited to the most

interesting ones:
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• Single Linkage: the dissimilarity between two clusters k1 and k2 is defined

as the minimum dissimilarity between any element of the two clusters, often

leading to narrow shape clusters

dk1k2 = minD(di,dj) i ∈ k1 , j ∈ k2

• Complete Linkage: this method computes the dissimilarity between two

clusters k1 and k2 as the maximum dissimilarity between any elements of the

respective clusters, typically creating spherical clusters

dk1k2 = maxD(di,dj) i ∈ k1 , j ∈ k2

• Unweighted Pair Group Method with Arithmetic Mean (UPGMA):[29]

here, the dissimilarity between two clusters k1 and k2 is equal to the average

dissimilarity between every pair of elements in k1 and k2.

dk1k2 = 1
Mk1Mk2

∑
i∈k1

∑
j∈k2

D(di,dj)

• Weighted Pair Group Method with Arithmetic Mean (WPGMA):

it is the weighted version of the previous method, which does not directly take

into account the size of the merged clusters. In fact, assuming that the cluster

k and k∗ have been merged together in the previous step into a new cluster

G1, the dissimilarity between clusters k1 and k2 is the arithmetic mean of the

average dissimilarity between k and k2 and between k∗ and k2.

dk1k2 = 1
2

 1
MkMk2

∑
i∈k

∑
j∈k2

D(di,dj) + 1
Mk∗Mk2

∑
i∈k∗

∑
j∈k2

D(di,dj)


Hierarchical methods are often represented graphically via dendrograms, which

serve as a mapping function correlating a given level of similarity/dissimilarity

to the corresponding partition. The dendrogram is represented as a tree, where

clusters constitute the nodes and the dissimilarity values between them form the

corresponding edges. An increase in dissimilarity along the edges signifies a coarser

partition. In order to select the optimal number of clusters, a heuristic approach is

to select the partition before a "jump," namely, between the chosen partition and

the next one, there is a relatively high difference in the two merging distances.
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In general, there is no strict rule to determine the exact number of clusters.

However, when the next partition occurs at a notably higher dissimilarity measure,

it becomes feasible to make a cut. Alternatively, the "elbow" method employing R2

can be utilized. This involves selecting the number of clusters such that an increase

by one results in only a marginal improvement in explained variability.

This type of method suffers from two significant disadvantages. Firstly, once

a document is assigned to a particular cluster, it cannot be assigned to any other

cluster. Secondly, the computational time complexity is O(M2), making it less

suitable for large corpora.

2.3.2 Partitioning methods

Hard K-means

The basic idea behind this methodology (also known as prototype based) ad-

dresses the two primary issues of hierarchical clustering. Specifically, it eliminates

the need for computing a dissimilarity matrix and produces a flat partition instead

of a sequence of nested partitions.

By predefining the final number of clusters K, the method represents each generic

cluster k with a centroid hk, which typically does not correspond to an actual data

point 3. The centroid matrix H is K × |V |. Introducing the allocation matrix

U ∈ M ×K, where each element uik is a binary indicator indicating whether the

i-th document is in the k-th cluster or not. In this hard version, the assumption

is that a document can be assigned to only one cluster, such that uik ∈ {0, 1} and
K∑
k=1

uik = 1. The objective is to minimize the variance within clusters, formally:



min
U,H

M∑
i=1

K∑
k=1

|V |∑
j=1

uik
(
dtij − dtkj

)2
= min

U,H

M∑
i=1

K∑
k=1

|V |∑
j=1

uik
(
dtij − hkj

)2

uik ∈ {0, 1} ∀i = 1, . . . ,M , ∀k = 1, . . . ,K
K∑
k=1

uik = 1 ∀i = 1, . . . ,M

3Conversely, in the Hard K-medoids, each cluster center corresponds to an actual data point.
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To solve this constrained optimization, the following algorithm is required:

Step 0 randomly initialize the centroid matrix Ht, where t = 0;

Step 1 update the allocation matrix Ut+1 using the following rules:

ut+1
ik =


1 k = arg min

|V |∑
j=1

(
dtij − htkj

)2

0 otherwise

Step 2 update the centroid matrix Ht+1 as follows:

ht+1
kj =

M∑
i=1

ut+1
ik ∗ dtij

M∑
i=1

ut+1
ik

Step 4 if |Ht+1 − Ht| < ε convergence is reached and the algorithm can be stopped;

otherwise, start again from Step 1.

The power of this algorithm lies in the random choice of centroids at Step 0,

necessitating multiple iterations to avoid local minima. Furthermore, the authors

in [2] propose K -Means ++, where the center of the cluster is chosen based on

probabilities proportional to the Euclidean distance between a point and the previous

center. In the K -Means scenario, the time complexity is linear and the optimal

number of clusters can be selected again using the elbow method applied to the R2

statistic for different partitions. However, the method has some drawbacks, including

a tendency to produce spherical clusters primarily because it relies on the Euclidean

distance, which does not take into account the variance and covariance structure of

the data 4. Moreover, it is sensitive to outlier values in the data as the centroids are

strongly affected by them.

Fuzzy K-means

Up until now, the previous clustering methods assumed that each document

could only belong to one cluster. However, it is possible to relax this assumption.
4Clusters have similar variances in all dimensions.
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Now, each document can have a membership degree to belong to a certain cluster,

denoted by uik, where uik ∈ [0, 1] [54]. The goal remains the same: to minimize the

variance within clusters. Once again, just for the sake of simplicity, the use of the

squared Euclidean distance is displayed while the cosine similarity is used.

Formally, the aim is to solve the following constrained minimization problem:

min
U,H

M∑
i=1

K∑
k=1

|V |∑
j=1

umik

(
dtij − hkj

)2

uik ∈ [0, 1] ∀i = 1, . . . ,M , ∀k = 1, . . . ,K
K∑
k=1

uik = 1 ∀i = 1, . . . ,M

Here, m is the fuzziness parameter, typically between 1.5 and 2. The values that

minimize this objective function can be found by solving the Lagrangian:

L =
M∑
i=1

K∑
k=1

|V |∑
j=1

umik

(
dtij − hkj

)2
−

M∑
i=1

λi

 K∑
k=1

uik − 1

 (2.7)

By computing the derivatives with respect to the parameters involved:



dL
duik

= mum−1
ik

|V |∑
j=1

(
dtij − hkj

)2
− λi = 0 ∀k = 1, . . . ,K , ∀i = 1, . . . ,M

dL
dhkj

=
M∑
i=1

(2hkjumik − 2umikdtij) = 0 k = 1, . . . ,K , j = 1, . . . , |V |

dL
dλi

=
K∑
k=1

uik − 1 = 0 ∀i = . . . ,M

Solving the previous minimization problem, it is possible to obtain that the values

which minimize the objective function are:

hkj =

M∑
i=1

umikdtij

M∑
i=1

umik

(2.8)

uik = 1

K∑
k∗=1



|V |∑
j=1

(
dtij − hkj

)2

|V |∑
j=1

(
dtij − hk∗j

)2



1
m−1

(2.9)
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For the computation of the centroid of a cluster, the membership degree of the

unit is considered. It is possible to generalize the previous algorithm as follows:

Step 0 randomly initialize the membership degree matrix Ut, where t = 0;

Step 1 update the centroid matrix Ht+1 using the updating rule in 2.8 and Ut;

Step 2 update again the membership degree matrix Ut+1 using again the rule contained

in 2.9 and Ht+1;

Step 4 if |Ht+1 −Ht| < ε or |Ut+1 −Ut| < ε, convergence is reached and the algorithm

stops. Otherwise, start again from Step 1.

Despite being more robust than its hard version, fuzzy clustering suffers from an

increased computational complexity, no longer linear. Additionally, it still requires

multiple initializations to avoid local optima and it still tends to produce spherical

clusters. To assign a unit to a specific cluster, a heuristic approach can be employed

by determining the argmax per row to identify the highest value of the membership

coefficient for each unit.

Bisecting K-means

Bisecting K -Means is an hybrid variant of the basic K -Means, merging aspects

of both divisive hierarchical clustering and non-hierarchical clustering, offering

advantages such as deleting the need for a dissimilarity matrix and "automatically"

determining the number of clusters. The algorithm proceeds as follows:

Step 0 starting with a single cluster containing all documents, the basic K-Means

algorithm is applied to split it into two clusters;

Step l for each iteration from 2 to M−1, the cluster with the highest internal variance

is selected and the basic K-Means algorithm is applied to split it further. This

process continues until all singleton clusters are formed.

The authors in [38] propose to generalize this algorithm for document clustering,

where the cluster to split is chosen using specific criteria (highest size, lower overall
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similarity, etc.) and after each split, the procedure is repeated multiple times to

select the split with the highest overall similarity. The optimal number of clusters

can be determined using methods like dendrograms, similar to hierarchical clustering.

Furthermore, the computational time complexity of this algorithm is linear, making

it faster compared to the basic K -Means algorithm, as units are only compared to

two centroids rather than K centroids.

2.3.3 Non-Euclidean Fuzzy Relational Clustering

It is possible that the information about the entire dataset is missing, but the

similarity between pairs of documents is known. In this particular framework, it

can be introduced a new approach, namely fuzzy relational clustering. Here, the

term "relational" refers to the fact that only the similarity measures among units are

possessed. One of the most important algorithms in this framework is FANNY [32],

which however relies on the idea that the similarities should be defined based on the

Euclidean distance. To address the aforementioned issue and extend the algorithm’s

applicability, the Non-Euclidean Fuzzy Relation Clustering (NEFRC) algorithm [17]

can be employed. Following a similar notation to the fuzzy K-Means algorithm, the

constrained minimization problem can be expressed as follows:

min
U

K∑
k=1

M∑
i=1

M∑
j=1

umiku
m
jkD(di,dj)

2
M∑
i=1

umik

uik ∈ [0, 1] ∀i = 1, . . . ,M , ∀k = 1, . . . ,K
K∑
k=1

uik = 1 ∀i = 1, . . . ,M

where m is the general fuzzifier. In this case, the Lagrangian function can be written

as:

L =
K∑
k=1

M∑
i=1

M∑
j=1

umiku
m
jkD(di,dj)

2
M∑
i=1

umik

−
M∑
i=1

λi

 K∑
k=1

uik − 1

−
M∑
i=1

K∑
k=1

ψikuik (2.10)
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Computing the derivatives with respect to the involved parameters (k = 1, . . . ,K , i =

1, . . . ,M):

dL
duik

=
mum−1

ik

M∑
j=1

umjkD(di,dj)

M∑
i=1

umik

−
mum−1

ik

M∑
i=1

M∑
j=1

umiku
m
jkD(di,dj)

2

 M∑
i=1

umik

2 − λi − ψik = 0

dL
dλi

=
K∑
k=1

uik − 1 = 0

dL
dψik

= uik = 0

Defining:

aik =

m
M∑
j=1

umjkD(di,dj)

M∑
i=1

umik

−

m
M∑
i=1

M∑
j=1

umiku
m
jkD(di,dj)

2

 M∑
i=1

umik

2 bik = aiku
m−2
ik (2.11)

the derivative with respect to uik can be written in a different form which allow to

solve the minimization problem in a simple way:

dL
duik

= um−1
ik aik − λi − ψik = uikbik − λi − ψik = 0 → λi = 1

K∑
k=1

1
bik

−

K∑
k=1

ψik
bik

K∑
k=1

1
bik

→

→ uik =
1
bik

K∑
k=1

1
bik

+ ψik
bik

−

K∑
k=1

ψik
bik

bik

K∑
k=1

1
bik

Using the Karush-Kuhn-Tucker conditions, it can be claimed that the optimal

value for the membership degree is:

uik =



1
bik

K∑
k=1

1
bik

g ∈ I+
i

0 g ∈ I−
i

(2.12)
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where:

I+
i =


k :

1
bik

K∑
k=1

1
bik

> 0


I .i =


k :

1
bik

K∑
k=1

1
bik

≤ 0


The algorithm to find the optimal value for the above problem can be outlined

as follows:

Step 1. Randomly initialize Ut, t = 0;

Step 2. update bt+1
ik using 2.11 with ut+1

jk if j < i, otherwise utjk (∀i = 1, . . . ,M , ∀k =

1, . . . ,K);

Step 3. update ut+1
ik according to 2.12 (∀i = 1, . . . ,M , ∀k = 1, . . . ,K);

Step 4. if |Ut+1 − Ut| < ε convergence is reached, otherwise repeat from Step 2.

Although this algorithm is highly effective in identifying hidden patterns in

similarity measures, it is not without limitations. Its scalability is one of them as

well as the huge influence of the sparsity of a similarity matrix, which can affect its

performance.

2.3.4 Model-Based methods

As discussed in Subsection 2.1, another common clustering method involves

using a finite mixture model. Here, each document is considered an independent

multivariate sample from a random variable that originates from one of K different

sub-populations. However, the assignment of each document di to a cluster is

initially unknown, making the data incomplete. To handle this, an indicator vector

variable Zi is defined, assuming that each entry can take as value either 0 or 1, with

the property that they sum up to 1 across all clusters:

Zik =


1 i ∈ k

0 otherwise

K∑
k=1

Zik = 1 (2.13)
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The idea is that each unobserved indicator random variable Zik follows a Multi-

nomial distribution with weights πk = P(Zik = 1), which can be considered as a

prior distribution on the mixing components. In particular, a priori they do not

depend on the specific document. These weights πk are probabilities lying in the

(K − 1)−dimensional simplex, where πk ≥ 0 and
K∑
k=1

πk = 1. More formally, defining

fk(.|θk) as the generic mixing component, the marginal distribution of a document

can be written as:

f(di|π1, . . . , πK , θ1, . . . , θK) =
K∑
k=1

πkfk(·|θk) (2.14)

To ensure cohesion within clusters and separation among clusters, the mixing

densities are chosen from the same parametric family (fk(·|θk) = f(·|θk)). Each mix-

ing component is represented as a multivariate Gaussian distribution parameterized

by its mean µk and variance-covariance matrix Σk. Therefore, the parameter vector

Ψ = {µ1, . . . , µK , π1, . . . , πK−1,Σ1, . . . ,ΣK} encapsulates these model parameters.

The complete data likelihood of the model can be expressed as follows:

L(Ψ) =
M∏
i=1

f(di,Zi|Ψ) =
M∏
i=1

f(di|Zi,Ψ)f(Zi|Ψ) =
M∏
i=1

K∏
k=1

MVN(di|µk,Σk)Zikπk

(2.15)

Therefore, the complete data log-likelihood can be derived as follows:

l(Ψ) =
M∑
i=1

K∑
k=1

Zik log
(
MVN(di|µk,Σk)πk

)
(2.16)

To maximize the complete data log-likelihood and estimate the parameters Ψ,

an Expectation-Maximization (EM) algorithm is employed. This iterative algorithm

proceeds as follows: given the estimated parameters at iteration t denoted by Ψ̂t, the

algorithm computes the next iteration in two phases. In the E-step, the algorithm

calculates the expected value of the complete data log-likelihood conditioned on the

observed data and the current estimate Ψ̂t:

Q(Ψ|C, Ψ̂t) = E[l(Ψ)|C, Ψ̂t] = E

 M∑
i=1

K∑
k=1

Zik|C, Ψ̂t

 =
M∑
i=1

K∑
k=1

P(Zik|C, Ψ̂t)

The E-step reduces to the computation of the posterior inclusion probabilities of

a document inside a cluster for each document inside the corpus and for each cluster.

More into detail, using the Bayes updating rule (∀k = 1, . . . ,K , ∀i = 1 . . . ,M):
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ŵt+1
ik |di, Ψ̂t = π̂tkMVN(di|µ̂tk, Σ̂t

k)
K∑
k=1

π̂tkMVN(di|µ̂tk, Σ̂t
k)

(2.17)

In the M-step, the algorithm maximizes the expected value of the complete

data log-likelihood conditioned on Ψ̂t. Closed-form estimations for the parameters

can be computed as detailed by [24]. When the convergence of the EM algorithm

is reached, a clustering partition can be defined using the Maximum A Posteriori

(MAP) criterion. Namely:

Ẑik =


1 k = argmax

k=1,...,K
ŵik

0 otherwise
(2.18)

The primary challenges of model-based clustering include selecting appropriate

initial values for the EM algorithm and determining the optimal number of mixture

components. Addressing the first challenge typically involves running the algorithm

with multiple random starts. Alternatively, the initialization can start from the

partition obtained by an agglomerative hierarchical method (MBHAC [4]). The

second challenge can be tackled using criteria such as the Bayes factor or the Akaike

Information Criterion (AIC). The Bayes factor compares the ratio of posterior to

prior odds of two models using Jeffrey’s scale, while AIC is a penalized likelihood

method where the penalization takes into account the number of parameters in the

entire model.

2.3.5 Density-Based method

The most commonly used density-based method is DBSCAN [23] (Density-

Based Spatial Clustering of Applications with Noise). The fundamental concept

of this method is that clusters of points can typically be identified as high density

regions, while points outside these regions are regarded as "noise". While this method

does not directly employ a graph representation for the clustering problem, it aims

to identify density-connected regions that can be thought of as similar to connected

components in a graph.
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Before delving into the explanation of the method, it’s important to define several

key tools. Given a corpus C, a distance function D(·, ·), a value ε and a minimum

number of points m:

Definition 1. The ε-neighborhood of a document d is defined as the set of all the

documents within a distance ε with respect to d. Formally:

Nε(d) = {d⋆ ∈ C|D(d,d⋆) ≤ ε} (2.19)

If the cardinality of the ε-neighbourhood of a document d is greater than m,

then d is defined as a "core" point, while in the other case it can be either a "border"

point or a "noise" point5. In particular, both the parameters ε and m are employed

to distinguish between points.

Definition 2. A document d is directly density-reachable from d∗ with respect to ε

and m if:

• d ∈ Nε(d∗)

• |Nε(d∗)| ≥ m, namely d∗ is a core point.

It is evident that the above relationship it is not symmetric because the starting

point must be a core point.

Definition 3. A document d is density-reachable from d∗ with respect to ε and m if

there exist a sequence of documents {d1, . . . ,dn} (d1 = d, dn = d∗) connecting the

two documents, such that each pair of consecutive documents (di,di+1) is directly

density-reachable.

As the previous case, density-reachability is not a symmetric relationship and a

new linkage should be defined .

Definition 4. A document d is density-connected to d∗ with respect to ε and m if

there exists a document d+ such that d and d∗ are directly density-reachable from

d+

Definition 5. A cluster k is a non-empty subset of C such that ;
5DBSCAN* does not make the distinction between border and noise points.
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• ∀d,d∗ ∈ C: if d ∈ k and d∗ is density-reachable from d, then d∗ ∈ k;

• ∀d,d∗ ∈ k: d is density-connected to d∗.

The DBSCAN algorithm proceeds by fixing values for ε and m, choosing an

arbitrary document d and identifying the subset of density-reachable documents

from d. If d is a core point, a cluster is formed by including all documents within

the ε-neighborhood, as well as those directly-reachable from these documents, and

so forth. If d is a border point, no further density-reachable documents exist and the

algorithm moves to another unexplored document to repeat the process. At the end

of the process, documents not assigned to any cluster based on ε and m are labeled

as "noise" and grouped into a single noise cluster. The challenge lies in effectively

selecting the hyperparameters ε and m, which significantly impact the clustering

analysis. One approach involves fixing m equal to r and compute the distances to

the r-th nearest neighbor for all documents, sorting these distances in ascending

order and selecting ε corresponding to the "elbow" of the curve.

Although DBSCAN offers several advantages (such as no need to specify the

number of clusters a priori, noise point definition, flexibility in choosing distance

functions etc.), it shows poor performances with high-dimensional data. Additionally,

it operates with quadratic time complexity. An extension of this method, known as

HDBSCAN (Hierarchical DBSCAN), gives a natural hierarchical extension to the

previous method [11].

2.3.6 Graph-Based methods

The main concept of this method involves representing a corpus C as an undirect

weighted graph, where each node represents a document and the edges denote

similarities between pairs of documents. Then, the idea is that clusters can be

represented by the different connected components in the graph. Two key questions

arise: what measure of similarity is employed and how is the graph G = (V,E)

constructed?

While cosine similarity can be used, an alternative approach involves introducing
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a new similarity measure using kernels 6. To begin, recall that in an input space

C, a kernel is defined as a function K : C × C → ℜ. Mercer’s theorem states that

this function is a kernel if and only if there exists a feature space ℜ|V | with an inner

product ⟨·, ·⟩ and a mapping function ϕ : C → ℜ|V |, such that for every pair of

documents di and dj :

K
(
di,dj

)
= ⟨ϕ(di), ϕ(dj)⟩ (2.20)

Cosine similarity can indeed be interpreted as a kernel function when considering

the mapping ϕ(di) = di
|di| . However, one of the most commonly used kernels in this

context is based on strings matching [41]. Given two documents and a value l, the

similarity between them can be measured by calculating the number of common

substrings of length l. In principle, the more common substrings two documents

share, the more similar they are. Mathematically:

K
(
di,dj

)
=
∑
t∈A

numt(di)numt(dj)λ (2.21)

Here, A is the set of all strings of length l in the two documents, numt counts

how many times the substring t appears in the two documents and λ is a decay factor

associated with each substring of length l. Different forms of λ result in different

kernel functions (e.g., Constant, Exponential, Boundrange).

With this kernel, it becomes possible to construct a similarity matrix for the

entire corpus. The simplest way to construct an undirected weighted graph is to

assume that all vertices are linked (complete connectivity), with the weight associated

with each edge being equal to the aforementioned similarity measure. Furthermore,

let Ω be the weighted adjacency matrix. If a sparser matrix is desired, a K-nearest

neighbor graph can be computed. Specifically, two vertices are linked if one of them

is among the K-nearest neighbors of the other and the weight associated with the

edge is the usual similarity measure 7.

As highlighted by [61], to employ spectral clustering, it is necessary to introduce
6Cosine can be considered as a kernel.
7Another construction scheme based on the ε-neighborhood also exists.
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the unnormalized Laplacian matrix:

L = D − Ω (2.22)

where D is the degree matrix, a diagonal matrix where each element on the

diagonal represents the sum of the weights between that vertex and all others.

Not delving too deeply into the details, L is a semi-positive definite matrix and

the number of connected components in the original graph equals the number of

null eigenvalues of L. Although clustering algorithms are typically applied to the

normalized version of the Laplacian matrix, similar considerations apply:

Lsym = D− 1
2 LD− 1

2 = I − D− 1
2 ΩD− 1

2 (2.23)

The most well-known spectral clustering algorithm comprises the following steps

[51]:

Step 1. construct the weighted graph G associated to one of three possible construction

of the graph as specified earlier. Form the weighted adjacency matrix Ω;

Step 2. compute the normalized Laplacian matrix Lsym 2.23;

Step 3. compute the first K eigenvectors;

Step 4. build a new matrix using the previously computed eigenvectors;

Step 5. normalize the rows of the previous matrix to have unit length;

Step 6. apply the K -Means algorithm on the new matrix. 8

The main advantage of this method is that it transforms the clustering problem

from ℜ|V | to ℜK , with K << |V |. Some of the main drawbacks of spectral clus-

tering include the necessity to select an appropriate similarity measure, increased

computational time with graph complexity and the challenge of determining the

optimal number of clusters.
8the author in [13] applies a fuzzy K -Medoids approach in this step.
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2.4 Cluster Validity

After delving into the definitions of various techniques, it’s crucial to introduce

the metrics used for assessing the quality of a clustering partition. Specifically,

despite of the typical methods employed to determine the optimal number of clusters,

it’s imperative to establish a measure to compare different algorithms. To elaborate

further, when the clustering partition of the documents is known beforehand, it’s

feasible to compute external measures. Conversely, if this information is unavailable,

one can compute internal measures [66] [38]. Note that external measures are used

also in a document classification type of approach.

Assuming that in the original dataset documents are labelled within q classes,

two key validity measures are:

• Entropy: it assesses the distribution of documents across different classes

within various topics. Ideally, a perfect partition would result in singleton clus-

ters. To compute entropy, each cluster’s probability distribution of documents

across classes is estimated. This involves computing the probability pik that a

document in cluster k belongs to class i based on the number nik of elements

of cluster k in class i and the total number nk of elements in cluster k:

p̂ik = nik
nk

Ej = −
∑
i

p̂ik log
(
p̂ik

)
(2.24)

the total entropy of a partition is obtained by computing a weighted average

of the entropy within each cluster, with the weights proportional to the cluster

sizes. The goal is to minimize entropy in order to maximize the relevance

of the query. In particular, the minimization is achieved when each cluster

represents perfectly the answer of a query, i.e. when the cluster is coincident

with the class;

• F-measure [39]: evaluates the effectiveness of clustering based on recall

(sensitivity) and precision, linked to the concept of a confusion matrix. Recall

measures the proportion of correctly classified documents over the total number

of documents in a class, while precision measures the proportion of correctly
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classified documents over the total number of documents estimated to belong

to a cluster. For each class, multiple (K) indicators are computed using the

harmonic mean between recall and precision and the maximum value is chosen.

A weighted average of these indicators yields a composite measure whereas

higher values are better.

Rik = nik
ni

Pik = nik
nk

Fik = 2RikPik
Rik + Pik

F =
∑
i

ni

M
max
k

{Fik} (2.25)

Additionally, when external information is unavailable, a heuristic approach

involves the computation of a weighted average of the intra-cluster similarity. This

measure assesses the similarity between the centroid of a cluster and its constituent

elements, typically calculated using cosine similarity. It is knows as Overall Sim-

ilarity and it lies in the interval [−1, 1] due to the value assumed by the cosine

similarity. Consequently, higher values indicate a higher cohesion inside clusters.

However, due to the nature of this measure, it tends to favor partitions with a higher

number of clusters, as the cosine similarity between a unit and itself is always one.

CSk = 1
nk

nk∑
i=1

cos(dti·,hc·) CS =
K∑
k=1

nk
M

CSk (2.26)

Given that the Overall Similarity is a monotonic measure in the number of

clusters and it is only a measure of cohesion, it is crucial to introduce a new measure,

specifically the Silhouette. The Silhouette assesses the similarity of a document

with respect to its assigned cluster and its dissimilarity from other clusters. Define ai
as the average distance between the i-th document and all the others in its clusters

and bi as the minimum distance between the i-th document and all the documents

not inside the same cluster:

S(i) = bi − ai
max{ai, bi}

S = 1
M

M∑
i=1

S(i) (2.27)

S(i) lies in the interval [−1, 1], where higher values mean that a document well-

suited in its cluster and a value of -1 suggests that a document might be better placed

in a neighboring cluster. Then, the average value for all the documents is computed

to provide a composite measure. The simplistic idea is that the optimal value of the

number of clusters is the one which maximize the average Silhouette. It is important



2.4 Cluster Validity 32

to note that working in a high dimensional regime could affect the stability of this

measure due to the usual curse of dimensionality affecting the Euclidean distance.

From an interpretative standpoint, one can employ the following rule of thumb to

measure the quality of the average silhouette value. If:

• S ∈ (0.7, 1], the score is very good;

• S ∈ (0.5, 0.7], the score is good;

• S ∈ (0.25, 0.5], the score is neutral;

• S ∈ [−1, 0.25], the score is bad.

Given the distinct nature of fuzzy clustering approaches, a fuzzy version of

entropy can be employed. While its interpretation differs from traditional entropy

used in information retrieval, fuzzy entropy serves as a measure of variability within

a cluster partition. The aim is to obtain a small value of this measure. Furthermore,

it also exists a fuzzy version of the silhouette which directly takes into account the

allocation matrix into the aggregate index. In particular:

FS =

M∑
i=1

(µik − µik′)α S(i)

M∑
i=1

(µik − µik′)α
(2.28)

where uik and uik′ represent the highest and second-highest membership degrees,

respectively, for document i. The generic weight, α, is also considered. In this case,

the optimal number of clusters is determined by the value which maximizes the

fuzzy silhouette.

As a final remark, I would like to emphasize that while external measures are

always a viable option, internal measures are not specifically designed for this

particular task. In the context of document clustering, which often involves high-

dimensional and sparse data, using internal measures can lead to anomalous results.
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Chapter 3

Hypothesis Test Based

Clustering Algorithms

3.1 Introduction

H aving outlined the principal algorithms employed in document clustering in

Chapter 2, it becomes evident that the principal limitations, as outlined in

Section 2.3, are that they operate in a high-dimensional space and it is difficult to

interpret the different clusters once a partition has been obtained. Indeed, there

exist two methods which have a very good performance in both interpretation and

clustering, namely BERTopic [26] and Top2Vec [1], although they no longer rely on

the BOW context, but rather on embeddings and, more generally, language models.

It may be the case to introduce a new method which relies on their ideas to solve

the problem.

The proposed methods for computing document clustering employs a well known

approach, i.e. Tandem analysis, a two-stage process. Initially, it can be observed

that the information contained within the DTM exhibits significant sparsity, so a

direct application of a clustering technique would be highly inefficient, specially if

Euclidean distance is employed. Consequently, a logical step is to employ dimension-

ality reduction techniques to streamline the data and extract the majority of the

information. As outlined in the previous Chapter, methods such as PCA, SVD or
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Uniform Manifold Approximation and Projection (UMAP) have already been used

to accomplish this task by BERTopic and Top2Vec. However, the proposed strategy

involves employing LDA to identify the main topics in the corpus under analysis. To

be honest, the principal aim of LDA is not to reduce the dimensionality of the data

matrix, rather to find common topics inside a corpus and define a set of words linked

to each topic. However this approach has the potential to reduce the dimensionality

of the DTM ( from a M × |V | matrix to a M ×G matrix, with G << |V |), with the

advantage of a better interpretability rather than other methods.

Before the introduction of the clustering technique, it is important to introduce

a new measure of similarity between documents. Without delving into detail, the

idea is that this new measure compares the distribution of the topics inside two

documents computing p-value associated to the hypothesis test of distributions

homogeneity via a Bootstrap approach, having as test statistic the Kullback-Leibler

divergence. Subsequently, two different techniques can be deployed to cluster the

documents effectively.

3.2 Latent Dirichlet Allocation

LDA, as introduced by [9] (and later generalized by [7]), represents one of the

most important techniques within the unsupervised learning paradigm. Its primary

objective is the identification of "latent variables" in a collection of documents,

specifically uncovering the underlying topics of interest within a given corpus. In

a nuanced exploration, LDA operates on the premise that, within a collection of

documents, each of them can be conceptualized as a mixture distribution across a

predetermined set of topics. Moreover, it postulates exchangeability of each document

conditioned on the topics which is noteworthy, given its implication of pairwise

uncorrelatedness among documents 1. Furthermore, LDA assumes homogeneity of

topics throughout the entire corpus. This assumption adds an additional layer of

constraint, asserting that the topics remain consistent across the entire document

collection.
1in a further paper [7] this assumption was relaxed.
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Since topics are latent variables, not directly observable, a novel path must be

defined for investigation. The fundamental concept behind LDA is to view each topic

as a mixture distribution over the entire dictionary. This implies that documents

sharing similar words also share the same underlying topic. Furthermore, words

are assumed to be exchangeable within each document given the topics, following

the BOW representation. In order to be coherent with the previous assumptions,

it is evident that the r-th word inside the i-th document, say wr
j is assigned to an

underlying reference topic, which can be denoted as zj . This concept suggests that

a topic can also be expressed through its one-hot encoded version, designated as Zri ,

a G-dimensional vector with a value of one corresponding to the reference topic j

and zeros in all other positions. Here, G represents the predetermined number of

topics within the corpus.

In light of these considerations, the focus shifts to the learning of two distinct

sets of elements:

• the matrix θ ∈ M ×G (Document-Topic matrix), where each entry represents

the probability distribution of the generic topic j inside document i. Basically,

each row can be interpreted as the mixing weight associated to the relative

topic for a document and so it lies in the G− 1 dimensional simplex;

• β ∈ G× |V | (Topic-Word matrix), where each entry represents the probability

distribution of a generic word given a specific topic. Each row in this matrix

represents the mixing weights associated with each word for the generic topic

and also in this case, they lies in the |V | − 1 dimensional simplex.

I had not previously mentioned that LDA can be viewed as an instance of a

Bayesian model, specifically within the framework of mixture models and Dirichlet

processes. Without delving too deeply into the intricacies, the fundamental concept

is that two distinct Multinomial-Dirichlet models are blended, one at the document

level and the other at the word level. In the simplest situation, assuming that

Yi ∼ Multinomialu(1,ψ) and ψ ∼ Dirichlet(η), the posterior distribution is conjugate

with respect to the prior distribution.
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In particular:

π(ψ|Y) ∝ f
(
Y|ψ

)
π(ψ) ∝

u∏
j=1

ψ

N∑
i=1

Yi,j

i

u∏
j=1

ψ
ηj−1
j =

u∏
j=1

ψ

 N∑
i=1

Yi,j + ηj

−1

j

The entire generative process can be succinctly summarized as follows:

1. θi· ∼ DirichletG(α) i = 1, . . . ,M

2. βj· ∼ Dirichlet|V |(η) j = 1, . . . , G

3. Zri |θi· ∼ MultinomialG(1, θi·) i = 1, . . . ,M , r = 1, . . . , ndi

4. wr
j |Zirj ,β ∼ Multinomial|V |

(
1,βj·

)
j = 1, . . . , G , i = 1, . . . ,M ,

r = 1, . . . , ndi

Figure 3.2.1. LDA graphical model [9].

It is pretty straightforward the derivation of the likelihood for the corresponding
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model:

π
(
C,Z | β, θ

)
=

M∏
i=1

π
(
di | Zi,β

)
· π
(
Zi | θi·

)
∝

M∏
i=1

ndi∏
r=1

G∏
j=1

π
(
wr
j | Zirj ,β

)
θ
Zi

rj

ij =

=
M∏
i=1

ndi∏
r=1

∏
j:Zi

rj=1
π
(
wr
j | Zjir,βj·

) ndi∏
r=1

G∏
j=1

θ
Zi

rj

ij ∝

∝
M∏
i=1

ndi∏
r=1

∏
j:Zi

rj=1

|V |∏
v=1

β
wr

jv

jv

G∏
j=1

θ

∑ndi
r=1 Z

i
rj

ij =
M∏
i=1

ndi∏
r=1

H∏
j=1

|V |∏
v=1

β
wr

jv∗Zi
rj

jv

G∏
j=1

θ

∑ndi
r=1 Z

i
rj

ij

In the Bayesian framework, a fundamental principle is that the posterior distri-

bution is proportional to the product of the likelihood and the prior distribution. In

this context, when determining the hyperparameters for the two Dirichlet priors,

you have the option to choose either the symmetric case or set them all to be equal

to the inverse of the number of topics. Despite the existence of a closed form for

the posterior distribution, the intricate dependencies among the LDA latent vari-

ables make analytical solutions challenging. Consequently, the use of computational

methods (Gibbs Sampler and Variational Inference) is needed to approximate the

posterior distribution.

In the context of selecting the optimal number of topics in topic modeling, the

process involves maximizing the likelihood of the model, which is crucial for language

modeling. Perplexity, introduced in 1977 by [31], serves as a measure to evaluate

models by calculating the inverse of the geometric mean per word likelihood on a

test set, where lower values indicate better performance 2. However, since perplexity

tends to favor higher numbers of topics, coherence measures are often used alongside

it. Coherence measures, as proposed by [47] and [63], assess the semantic similarity

within top-ranked words per topic (usually the first ten) and then an aggregate

score is provided. More formally, the coherence of topic j is defined as the sum of

the coherence score for all the possible couple of words in the n top-ranked. The

two most used scores are the UCI [50] and the UMASS [47], which are respectively

defined as:

UCI (wi,wi∗) = log P(wi,wi∗)
P(wi)P(wi∗) UMASS (wi,wi∗) = log P(wi,wi∗) + 1

P(wi)
2This is because it computes the exponential of the negative log-likelihood.
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However, the optimal number of topics will be selected using four additional

metrics which are already implemented in the ldatuning package. These metrics

consider perplexity and coherence measures separately to provide a comprehensive

view of the optimization problem.

Once the appropriate number of topics is determined, assessing the importance

of each topic within the corpus can be done using a significance degree method

introduced by [42]. This method computes a score for each topic in each document

based on its importance and on its prevalence in the document, obtaining an M ×G

matrix. Then these scores are aggregated across the entire corpus for each different

topic in order to obtain a measure which reflects its importance.

S
(
zj ,di

)
= θij log

(∑M
i∗=1 θi∗j
θij

)
j = 1, . . . , G , i = 1, . . . ,M

S(zj) =
M∑
i=1

S
(
zj ,di

)
j = 1, . . . , G

(3.1)

3.3 Test the Homogeneity of Topic Distributions

In Chapter 2 a comprehensive overview of the most commonly used similarity

measures was presented. However, as pointed out in Section 3.1, it is important to

introduce an additional measure to assess whether two documents exhibit substantial

similarity.

The heuristic idea of comparing two pairs of different documents was outlined in

[35], which postulates that two different documents can be considered "similar" if

they share the same topics. In fact, given a fixed number of topics G, it is possible

to use the posterior distribution of the Document-Topic matrix to compare two

documents. More specifically, denoting as θ̂ the posterior distribution of topics

within documents and as β̂ the posterior distribution of words within topics, its

primary objective is to evaluate whether the distributions of topics in any two given

https://rpubs.com/nikita-moor/107657
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documents, represented as di and di∗ , are equivalent. Formally:
H0 :

(
θdi1, . . . , θdiG

)
=
(
θdi∗ 1, . . . , θdi∗G

)
H1 :

(
θdi1, . . . , θdiG

)
̸=
(
θdi∗ 1, . . . , θdi∗G

) (3.2)

In order to measure how much the two distributions are similar, the Kullback-

Leibler divergence can be employed (2.4), as well as the Bhattacharyya distance

(2.5). However, the p-value associated with the hypothesis test has to be computed.

A p-value represents the probability, under the null hypothesis, of observing a test

statistic value that contradicts (namely it is more extreme than) the observed value.

Since the probability distribution of the test statistic in unknown a priori, another

method must be defined to compute the p-value.

The (non-parametric) Bootstrap method, introduced by [22], is a suitable ap-

proach for this purpose. The essence of the Bootstrap method is to treat the original

sample as a pseudo-population sharing the same characteristics as the actual popu-

lation. Then, it assumes that each unit in the sample is independent and has the

same sample weight. Concerning LDA, documents are not independent but they are

conditional independent given topics. The procedure is straightforward. In fact, it

is possible to sample with replacement from the pseudo-population and compute the

test statistic estimate. Sampling with replacement from the pseudo population is

equivalent to drawing a sample from a Multinomial distribution with equal weights.

This process is repeated a fixed number of times, denoted as B and a sequence of

estimated test statistic is generated.

What makes the Bootstrap method advantageous is its independence from an

underlying probability distribution linked to the test statistic, which in the case

under consideration is unknown. This characteristic makes it suitable for estimating

probabilities, such as the p-value. To determine the p-value using Bootstrap, the

comparison between the observed test statistic value, denoted as T obs and the test

statistic values obtained from the Bootstrap sample, denoted as T b, is required. Due

to the fact that higher values of the Kullback-Leibler divergence (Bhattacharyya

distance) mean that two distributions are dissimilar, the p-value is estimated by
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calculating the proportion of times the estimated test statistic in the Bootstrap

samples exceeds the observed value. More formally:

I = P(T > T obs|H0) and Î = 1
B

B∑
b=1

I{T b > T obs} (3.3)

Two distinct considerations can be discussed. Firstly, in the absence of an

underlying probability distribution, Bootstrap methods do not exhibit the full suite

of asymptotic properties of the usual Monte Carlo ones. Nevertheless, Bootstrap

methodology stands out as a robust alternative. Secondly, it is feasible to compute

confidence intervals of the estimated proportions. Given the nature of the parameter,

only the Standard Normal confidence interval at level 1 − α can be computed.

CI1−α = Î ± qz,α/2se(Î) = Î ± qz,α/2

√
Î(1 − Î)

B
(3.4)

Following this brief discussion about the Bootstrap methodology, the method

to be employed in order to estimate the p-value linked with the hypothesis test of

homogeneity of topic distributions can be easily introduced:

1) fit the LDA model on the entire corpus C, determine the optimal number of

topics using perplexity and coherence measures and then obtain the estimates

θ̂ and β̂ using either a Gibbs Sampler or Variational Inference. Also, establish

a significance level α;

2) for each pair of distinct documents di and di∗ , where i ̸= i∗, calculate the

test statistic considering the corresponding rows of the matrix θ̂ as reference

probability distributions. If employing the Kullback-Leibler divergence, the

test statistic T oii∗ is defined as::

T oii∗ =
G∑
j=1

θ̂dij log

 θ̂dij

θ̂di∗j


at the end, an M ×M matrix, denoted as To, is obtained where the diagonal

elements are all equal to zero. Note that since the Kullback-Leibler divergence

is not symmetric, in principle there is no guarantee that To is symmetric;

3) given a pair of distinct documents di and di∗ (i ̸= i∗), under the null hypothesis

of topic distribution homogeneity, combine the two documents into a synthetic
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one, denoted as di−i∗ . Practically, since the data for the model is the DTM,

simply add the corresponding rows together to create a new (M − 1) × |V |

matrix and replace it in the position corresponding to di. Then, delete the row

in the DTM corresponding to di∗ , obtaining DTMmerged 3. Essentially, given

that a document can be represented only by word frequencies, it is entirely

coherent to merge them in this way if they share the same topic distribution.

Then, fit again the LDA model on C
⋃

{di−i∗}/{di,di∗} and obtain the new

estimates θ̂merged ∈ (M − 1) ×G and β̂merged ∈ G× |V |;

4) once the estimates of the two matrices have been obtained, the Bootstrap

procedure can be initialized in the following way. Sample with replacement

from the pseudo-population di−i∗ to generate dnewi and dnewi∗ . The sampling

process is straightforward, in fact just for a new word wnew:

π
(
wnew|di−i∗

)
=
∫∫∫

π
(
wnew|Zi−i∗ , θ̂i−i∗ , β̂

)
π
(
Zi−i∗ , θ̂i−i∗ , β̂|di−i∗

)
dβ̂ dZi−i∗ dθ̂i−i∗

multiply the row corresponding to di−i∗ in the θ̂merged matrix for β̂merged
in order to obtain a distribution over the entire vocabulary. In essence,

each column of the Topic-Word matrix can be regarded as the probability

distribution of a word conditioned on one of the topics. Consequently, by

computing the dot product between the topic distribution within the pseudo-

population and the generic column of the Topic-Word matrix, it is possible

to weight each word with the probability of observing a specific topic. Then

draw from a Multinomial distribution ndi
times for di and ndi∗ times for di∗

(Dirichlet-Multinomial distribution).

τ = (θ̂merged)i × β̂merged ∈ 1 × |V |

wnew|di−i∗ ∼ Multinomial|V | (1, τ)

An alternative and still valid possibility is to draw from a Multinomial dis-

tribution to select a topic and then, using the corresponding row to that

topic of β̂merged as the probabilities over the vocabulary, draw a word from
3This approach makes the implicit assumption that the index associated with the position of the

document di in the DTM is lower than the index of the position of the document di∗ .
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a Multinomial again. Intuitively, a simulation from the posterior predictive

distribution is made in order to entirely re-build the two documents.

Next, re-fit the LDA model considering the updated M ×M Document Term

matrix, where the two selected documents have been replaced with the newly

sampled ones. From the new estimate of θ̂new, compute the test statistic for

the two documents:

T ∗
ii∗ =

G∑
j=1

θ̂newdij log

 θ̂newdij

θ̂newdi∗k


5) repeat Step 3 for all the pairs of different documents and for each new pair,

repeat Step 4 B times in order to have a sequence of Bootstrap values for the

test statistic, i.e. {Tnew,1ii∗ , . . . , Tnew,Bii∗ };

6) compute the p-value p̂ii∗ for each pair using (3.3) and the corresponding

confidence intervals using (3.4). If the Bootstrap estimate of the p-value falls

below the chosen confidence level α, it allows to reject the null hypothesis

regarding document homogeneity. Conversely, if the Bootstrap estimate exceeds

the confidence level, it is not possible to reject the null hypothesis.

Once the procedure has been presented, it is important to highlight the advantages

and disadvantages associated with it. In Figure 3.3.1, you can see an example of the

described procedure applied to two distinct documents. The conclusion drawn is that

it is not possible to reject the null hypothesis of homogeneity because the p-value

is very high. At the end of this process, an M ×M symmetric matrix of p-values

is obtained. Three important considerations can be made. First of all, it should

be noted that while there is no guarantee of symmetry in the estimated matrix

initially, after a certain number of Bootstrap iterations, the values tend to stabilize

and become quite similar, allowing to assume the symmetry of the matrix. The

opposite assumption would be counter-intuitive. Moreover, under this assumption,

only (M) × (M − 1)/2 computations are necessary. This is because the diagonal

elements are assumed to be equal to 1, reflecting that a document is certainly similar

to itself 4.
4Although, for theoretical coherence, it should technically be 1 − α, but this notation is avoided

for simplicity.
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Figure 3.3.1. Bootstrap replicates of the homogeneity test with B = 300 applied to two

distinct documents.

Another interesting problem concerns determining the optimal number of Boot-

strap replicates required to obtain reliable p-values. According to [22, 44], a suffi-

ciently large number of replicates is needed, typically at least 500 for the simplest

statistics, which drastically increases for the estimation of a p-value. However, in

this case, it is not feasible to employ a very high number of replicates due to the

reliance of the method on subsequent repetitions of LDA, which can be computa-

tionally cumbersome 5. Although a higher number of replicates would result in

a better estimation of the p-value, a good trade-off between computational time

and optimality is achieved with a number of iterations close to 500 (Figure 3.3.2).

Of course, if significant computational resources are available, a higher number of

replicates is recommended.

Lastly, it’s crucial to emphasize that the outcome of LDA can vary if the
5On my computer, which has 3 available cores, it takes approximately 3 minutes and 20 seconds

to compute a p-value using the distributed version of LDA with 1000 iterations [62].
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distributions of parameters involved fail to converge, underscoring the necessity of

achieving a situation of stationarity for the distributions. This issue is inherent

to Bayesian problems requiring simulation and extends to the reliability of the

sampling scheme utilized in the Bootstrap phase, potentially impacting the analysis.

A minor issue arises from the possibility that the interpretation of a topic may vary

across different runs. For instance, if topic 2 is initially associated with a specific

phenomenon, it is conceivable that repeating the LDA process might influence the

interpretation of topic 2 due to the lack of a strict labelling protocol.

Figure 3.3.2. p-values for 7 distinct couples of documents for different values of the Bootstrap

replicates.

Kullback-Leibler vs Bhattacharyya

One important research question concerns whether there exists a difference in

the matrix of p-values when employing the Bhattacharyya distance (2.5) instead

of the Kullback-Leibler divergence (2.4). The simplistic idea is that despite the

significant differences between these two similarity measures, the resulting p-values
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should be largely similar.

Figure 3.3.3. Bootstrap estimates of p-values and confidence intervals at level 0.9 of 50 distinct

couple of documents using Kullback-Leibler divergence and Bhattacharya distance with

500 iterations.

From Figure 3.3.3, it seems reasonable to state that in the majority of the

cases there is a substantial concordance between the Bootstrap p-values estimates

obtained using as the similarity measure the Bhattacharya distance rather than the

Kullback-Leibler. However, the two confidence intervals just in a few cases tend to

overlap, so the choice of the similarity measure can have an small influence on the

values attained by the matrix of p-values.

Although both metrics lack the triangle inequality property, the Bhattacharyya

distance possesses symmetry, which can be particularly useful in establishing the

symmetry of the p-value matrix. Until now, this assumption has been made to

streamline computations. As pointed out in Subsection 2.2.3, these two measures

are related and it is possible to demonstrate that the Kullback-Leibler divergence
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is generally greater than the Bhattacharyya distance. More formally, it can be

stated that the Bhattacharyya distance tends to be at least half of the value of the

Kullback-Leibler divergence for the same probability distributions:

B(p, q) = − log
(∑

x

(
p(x) ∗ q(x)

) 1
2

)
= − log

∑
x

(
p(x) ∗ q(x) ∗ p(x)2

p(x)2

) 1
2

 =

= − log

∑
x

p(x)
(
q(x)
p(x)

) 1
2

 = − log

E
(q(x)

p(x)

) 1
2


 ≤ −E

log
(
q(x)
p(x)

) 1
2


= −

∑
x

p(x) ∗ log
(
q(x)
p(x)

) 1
2

= 1
2KL(p, q)

3.4 New Document Clustering proposals

After introducing the homogeneity between topic distributions Bootstrap test,

it becomes interesting to explore how its p-value can be applied in the context

of document clustering. Essentially, this estimated p-value can be interpreted as

a measure of similarity between any two documents, where lower values indicate

greater dissimilarity and higher values suggest stronger similarity. This is inherently

linked to the definition of the p-value, as a low value indicates the rejection of the

null hypothesis, while a high value implies the non-rejection of the null hypothesis 6.

DOC 1 DOC 2 DOC 3 DOC 4
DOC 1 0 0.256 0.031 0.742
DOC 2 0.256 0 0.123 0.891
DOC 3 0.031 0.123 0 0.06
DOC 4 0.742 0.891 0.06 0

Table 3.4.1. Example of a dissimilarity matrix build using the estimated p-value

(D(di,di∗) = 1 − p̂ii∗) linked with the hypothesis test of homogeneity between topic

distributions of 4 documents in the BoAs corpus.

6DOC1:"Adaptive treatment allocation and selection in multi-arm clinical trials: A Bayesian

perspective ", DOC2: "Variable selection in distributed sparse regression under memory constraints",

DOC3: "Double machine learning for (weighted) dynamic treatment effects", DOC4: "Group

selection with Bayesian high dimensional modeling"
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A straightforward approach would be to define the dissimilarity 7 between two

documents di and di∗ as D(di,di∗) = 1 − p̂ii∗ , which takes values in the range

[0, 1]. By applying this calculation to every pair of documents, a dissimilarity matrix

can be constructed. From Table 3.4.1, it is possible to find an example of a small

dissimilarity matrix build using 600 iterations of the Bootstrap test.

Subsequently, three different approaches can be delineated, the first two of which

utilise the p-value linked to the hypothesis test exclusively at an initial stage. The

first one is an agglomerative hierarchical clustering procedure (which can employs

any type of linkage method, as described in Subsection 2.3.1), while the other is

an application of the NEFRC algorithm (Subsection 2.3.3) made on the previously

defined dissimilarity matrix. Nevertheless, although these two approaches represent

a novel contribution to the field of document clustering, they primarily address the

inferential problem at an initial stage. Consequently, there is no strong assurance

that clusters formed at subsequent stages of the clustering process maintain statistical

equivalence based on the hypothesis test. Furthermore, it is crucial to emphasise that

the two clustering methods are based one the estimated dissimilarity matrix. The

precision of the estimation of each p-value relies on the number of replicates chosen

in the Bootstrap phase. This implies that the complexity of the new algorithms

is dependent on two factors. Firstly, the complexity of creating the dissimilarity

matrix, which is typically high (recall Section 3.3 for a better explanation) and

secondly, the complexity of the hierarchical/relational clustering procedure.

To tackle the first issue, following the ideas outlined in [25], a procedure can be

implemented to overcome the challenge of maintaining statistical equivalence between

partitions. Also in this case, an agglomerative approach can be defined. Begin with

the trivial partition of all singletons and set a significance level α. Typically, the

choice of the significance level α depends on the desired type I error probability,

often ranging between 0.01 to 0.1. Compute the symmetric matrix of p-values using

the estimated p-values via the Bootstrap procedure to test the homogeneity of topic

distributions among documents described in Section 3.3. Then connect the two
7It is not, in fact, a distance because it fails to fulfil all the necessary properties.



3.4 New Document Clustering proposals 48

documents with the highest p-value that exceeds the threshold α. If no p-value is

greater or equal than the significance level, it means that the clusters are statistically

distinct at that specific significance level and the clustering process can be concluded.

In further detail, the algorithm can be outlined as follows:

Step 1 Given a corpus C, a significance level α, a fixed number G of topics, compute

the matrix of p-values using the method described in Section 3.3;

Step 2 identify the pair of documents with the highest p-value score. If this p-value

exceeds the significance level α, link these two documents together to form a

cluster. To define the cluster centroid, merge the corresponding rows in the

DTM;

Step 3 compute the p-values between the newly formed cluster and the remaining

individual documents. Again, identify the highest p-value in this updated

similarity matrix. If this p-value is greater than α, merge the clusters associated

with this highest p-value. Otherwise, terminate the clustering procedure. It is

possible to compute the within sum of squares using the formula 2.6;

Step 4 repeat Step 3 iteratively until no p-value exceeds the significance level α,

indicating that all remaining clusters are statistically distinct at this threshold.

There are several important considerations to take into account with this proce-

dure:

• it is important to note that due to the reliance of LDA on the Multinomial

distribution, cluster centroids are obtained by summing the word frequencies

within the documents, not by computing an average value. From an interpre-

tative perspective, since topics are essentially defined as mixtures of words,

if two documents are statistically equivalent, they should share a significant

number of words. Therefore, by employing the summation of the rows of the

DTM, the common topic should be more apparent. On the other hand, this

can introduce biases when comparing documents of different lengths, which

highlights a potential challenge in maintaining document comparability during
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the clustering process. An alternative approach would be to select a single

document as the representative of the cluster (medoid approach). However,

this type of approach presents issues in the selection procedure of the medoid

for each cluster due to the fact the choice would be randomly made;

• the computational cost can be significant, particularly in the worst-case sce-

nario. The initial computation involves generating the matrix of p-values for all

document pairs, which requires (M(M−1))/2 iterations. Subsequent iterations

involve computing p-values between clusters, which requires (M − 1)(M − 2)/2

iterations in the worst case. This cumulative computation can be computa-

tionally cumbersome for large datasets. Additionally, as the previous method,

one must also consider the number of Bootstrap replicates in the calculation of

p-values, which can further increase the computational costs. The estimation

of p-values is particularly critical, as any loss in precision could dramatically

impact the clustering method;

• unlike methods that require selecting an optimal number of clusters, this

approach employs an objective stopping criterion based on the significance level.

However, at each iteration it is possible to save the current clustering partition

providing insight into the progression of clustering. It’s also intriguing to note

that this method can be seen as an instance of an agglomerative hierarchical

approach. Additionally, with each iteration, the corresponding merging p-value

should gradually decreases;

• the choice of confidence level impacts both the size of clusters and the final

partition obtained. Increasing α typically leads to a high number of small

clusters, as higher confidence levels make it less likely for documents or clusters

to merge. Conversely, lowering α can result in a lower number of clusters with

a greater size;

• the number of topics is maintained constant throughout each iteration of

the clustering procedure, which may be perceived as a somewhat simplistic

approach, not from an interpretative point of view but from a methodological

perspective.
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3.5 Comparison

For the subsequent analysis, two datasets have been selected. The first dataset

consists of a collection of Books of Abstracts from the CMStatistics conference,

and it is being used for clustering purposes for the first time. Unfortunately, this

dataset is not publicly available unless PDF scraping is conducted, but it can be

obtained from the author of this thesis upon request. It encompasses all published

papers presented at the aforementioned conference from 2008 to 2020. I selected this

dataset because it lacks labels and relates to a domain that I can readily interpret.

Similarly to the previous situation, I opted to focus on a subset of the original

dataset, specifically considering only 100 documents from the conference’s last two

years chosen completely at random. After applying basic preprocessing to this

dataset (detailed in Subsection 2.2.2), I chose to adopt a lemmatizer from the NLTK

library. Subsequently, I removed words that appeared in less than 4% or more than

95% of the corpus, leading to a vocabulary of 474 words was obtained (with 91%

sparsity).

Figure 3.5.1. Coherence scores for the 20 Newsgroups corpus.

The second dataset is the well-known 20 Newsgroups (benchmark dataset),

made of roughly 20,000 documents categorized into 20 different groups covering

http://qwone.com/~jason/20Newsgroups/http://qwone.com/~jason/20Newsgroups/
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topics ranging from science to political discourse and motorcycles. Following the

methodology outlined in [46, 60, 14], a subset of the original dataset has been

selected. Specifically, I chose to focus on the macro-area associated with science.

This subset consists of four distinct labels: "sci.space," "sci.electronics," "sci.crypt,"

and "sci.med." I opted to work with a reduced number of documents, selecting

100 documents while preserving the proportion of documents within the different

classes. After applying the same preprocessing steps as before, a final vocabulary of

approximately 421 words (with 90% sparsity). It is noteworthy to mention that in

the two preprocessing phases, unigrams, bigrams and trigrams have been considered.

Figure 3.5.2. Coherence scores for the BoAs corpus.

After the preprocessing step, coherence measures were employed to find the

optimal number of topics for the two datasets. From Figure 3.5.2, it is evident that

for the BoAs corpus, the optimal number of topics is approximately 12, while for

the other dataset (Figure 3.5.1) it is approximately 10. The idea is that the optimal

number of topics lies between the intersection points of the two plots, as pointed

out by Nikita Moor (creator of the package). Furthermore, in both situations, the

chosen topics tend to represent slightly different aspects within a specific area. For

example, in the 20 Newsgroups dataset, one of the topics discusses encryption in

general, while another explicitly talks about internet privacy.

https://rpubs.com/nikita-moor/107657
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In conclusion, it is noteworthy to mention that it is unlikely that one would

encounter a corpus of this size in a real-life scenario. However, this choice was made

for computational and time-related reasons.

3.5.1 Notation and Results

Up until now, the three clustering methods have been presented from a theoretical

point of view. A basic question could arise:

How do these new clustering methods perform compared to

the ones commonly used in the literature?

Before delving into the application of all the methods, it is mandatory to establish

a common notation for all the different clustering techniques that will be applied for

the experimental part 8.

LUC) latent unsupervised clustering, namely the third method described in Section 3.4

with α equal to 0.05 and G topics which are different in the two cases. The

number of iterations have been fixed to 600;

HAC-P) hierarchical agglomerative clustering applied on the estimated matrix of p-

values obtained with the application of the first method described in Section 3.4

with 600 iterations using WPGMA as linkage method;

HAC-C) hierarchical agglomerative clustering applied on the reduced matrix using

cosine similarity and the complete linkage method;

KM-E) K-Means using Euclidean distance with K-Means ++ initialization applied

on the reduced matrix;

KM-C) K-Means using cosine similarity applied on the reduced matrix;

FKM) Fuzzy K-Means with fuzziness parameter equal to 2 applied on the reduced

matrix;
8It is important to state that every time I talk about the reduced matrix I am referring to the

matrix of the score obtained applying PCA on the original DTM.
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BKM) Bisecting K-Means with the bisecting criterion based on the greatest internal

variability applied on the reduced matrix;

GMM) Gaussian Mixture Model with K components applied on the reduced matrix.

The EM algorithm has been initialized using the partition obtained via a

agglomerative hierarchical approach;

SC) spectral clustering with K clusters using the string kernel (length 6, λ equal

to 1.2 and Boundrage kernel) as a similarity measure applied on the original

corpus C without any preprocessing;

NEFRC-P) Non Euclidean Fuzzy Relational Clustering applied on the dissimilarity matrix

based on the estimated matrix of p-values (second method in Section 3.4).

In the subsequent phase, the focus shifts to the application aspect the two

small datasets, while the method’s performance is analyzed in comparison with

other methods. It’s important to note that due to constraints in my computational

resources throughout this thesis, all simulations were conducted using Terastat 2.0

[10]. I utilized 16 cores, each with 2GB of RAM.

Before approaching the clustering procedure, it is crucial to emphasize a key

point. Despite employing 600 iterations for the Bootstrapping method, the p-values

matrix exhibits a certain degree of sparsity, approximately 30%. Consequently, the

dissimilarity matrix maintains a similar proportion of 1 values (as depicted in Figure

3.5.3) which can have an influence on the subsequent clustering procedures.

From Table 3.5.1, it seems that no single method emerges as universally superior

across all possible partitions. However, SC proves to be the most effective in half of

the scenarios. Among the methods developed in Subsection 3.4, they tend to yield

similar scores, albeit with the HAC-P showing slightly better performance. It is

noteworthy to mention that LUC didn’t stop prematurely due to the fact that the

greater p-value was greater than the confidence level α, but rather merged all units

into one cluster.
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Figure 3.5.3. Dissimilarity matrix obtained using D(di,di∗) = 1 − p̂ii∗ on the BoAs dataset.

Clusters LUC HAC-P HAC-C KM-E KM-C FKM BKM GMM SC NEFRC-P

2 0.375 0.372 0.369 0.382 0.378 0.379 0.3795 0.373 0.385 0.371

4 0.399 0.410 0.410 0.429 0.399 0.409 0.411 0.408 0.419 0.392

6 0.417 0.442 0.429 0.449 0.424 0.409 0.4367 0.434 0.445 0.412

8 0.440 0.459 0.448 0.478 0.453 0.433 0.460 0.468 0.491 0.431

10 0.468 0.478 0.462 0.4896 0.477 0.436 0.480 0.483 0.515 0.4485

Table 3.5.1. Overall similarity scores for different clustering partitions and for all the

different methods applied to the BoAs corpus computed on the original DTM.

In conclusion, it seems that across all methods, the optimal solution is achieved

with four clusters. This is because, when more than four clusters are used, the

relative improvement in internal cohesion is minimal and having more clusters could

compromise interpretability. Figure 3.5.4 illustrates the different assignments of

units to the four clusters in the GMM and LUC approaches.
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Figure 3.5.4. Assignments of units to clusters considering the two component of PCA using

GMM (left) and LUC (right) on the BoAs corpus.

Upon closer examination, particularly focusing on the partition in four clusters

obtained using the three new methods, it becomes apparent that within each cluster,

there exist sub-clusters of documents that share the same topic. This observation

suggests that despite the overall similarity not being optimal, the methods still

manage to generate interpretable results. As illustrated in Figure 3.5.5, for instance

considering the partition with four clusters, it becomes evident that the prevalence

of topics within clusters is more or less homogeneous for the NEFRC-P method,

the situation is somewhat less homogeneous for the HAC-P method, while in the

other case it is heterogeneous just for three clusters. It is noteworthy that for the

LUC method, topic 10 ("Functional Analysis") stands out as it is predominantly

discussed in cluster 4. For cluster 2 and 3, it is possible to observe that they

share more less the same topics. To conclude, the labels associated to the other

topics are: 1 ("Undefined"), 3 ("Undefined"), 4 ("Computational Statistics"), 5

("Bayesian"), 6 ("Regression"), 7("High-Dimensional"), 8 ("Asymptotics"), 9("Spatial

data"), 11("Causal Inference") and 12 ("Clustering").
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Figure 3.5.5. Significance degree of the 12 topics (3.1) inside the partition with 4 clusters

obtained using the LUC method (top left), HAC-P (top right) and NEFRC-P (bottom

center) referring to the BoAs corpus.

Moving forward to the other corpus, despite employing the same number of

Bootstrap replicates, it is evident from Figure 3.5.6 that the degree of sparsity in

the p-value matrix is lower (approximately 18%). Additionally, it seems that this
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time, relationships between documents have been more accurately captured by the

p-values. Lastly, I want to emphasize that even though the access to the information

about the labels of documents is possessed in this scenario, the primary aim remains

clustering rather than classification, due to the fact they are distinct tasks with

different goals.

Figure 3.5.6. Dissimilarity matrix obtained using D(di,di∗) = 1 − p̂ii∗ on the 20 Newsgroups

corpus.

From Table 3.5.2, it can be observed the behavior of different models for the

partition with four clusters. From a classification perspective, it is evident that none

of the chosen models perform exceptionally well. Considering all indices, the HAC-C

method, the KM-C method, and the SC method emerge as the most effective.

Index LUC HAC-P HAC-C KM-E KM-C FKM BKM GMM SC NEFRC-P

Entropy 0.335 0.329 0.272 0.338 0.337 0.356 0.336 0.327 0.3126 0.330

F −measure 0.117 0.201 0.241 0.128 0.242 0.206 0.168 0.243 0.2458 0.260

Cosine 0.365 0.3436 0.348 0.388 0.437 0.397 0.406 0.405 0.422 0.3710

Table 3.5.2. Entropy score, F −measure and Cosine similarity for all the different methods

applied to the reduced 20 Newsgroups with 4 labels.
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From an interpretative perspective, Figure 3.5.7 illustrates the following sit-

uation. For the NEFRC-P method, no particular topics dominate any cluster,

as the proportions within each topic are fairly similar. In contrast, the other

two clustering methods reveal a more distinct prevalence of specific topics within

clusters. Specifically, for the LUC method, Cluster 1 is associated with Topic 3

("Electronics-Know How"), Cluster 2 with Topic 5 ("Medicine"), Cluster 3 with Topic

1 ("Crypto-Government"), and Cluster 4 with Topic 10 ("Space"). For the other

method, the distinctions are less pronounced, but it is still possible to identify a

connection between Cluster 3 and Topic 10, as well as Cluster 1 and Topic 3.

Figure 3.5.7. Significance degree of the 10 topics (3.1) inside the partition with 4 clusters

obtained using the LUC method (top left), HAC-P (top right) and NEFRC-P (bottom

center) referred to the 20 Newsgroups corpus.
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The labels associated to other topics are: 2 ("Undefined"), 4 ("Electronics-Chips"),

6 ("Electronics-NNTP"), 7 ("Electronics-Internet Privacy"), 8 ("Undefined") and 9

("Space-Company").

In conclusion, based on the results of these two small experiments, several

observations can be made. Firstly, despite the higher computational cost, it is

clear that the newly defined clustering methods tend to perform on average as well

as other methods, without exhibiting exceptional behavior. Secondly, these new

methods rely on the estimation of the dissimilarity matrix, which depends on the

number of Bootstrap replicates. Therefore, the main disadvantage is the extensive

computational time required for the computation of all the p-values, making the

problem not scalable with basic computers. Lastly, from an interpretive point of

view, the LUC method appears to be the most effective at capturing documents

that share the same topic among the newly developed clustering schemes.

To make this method scalable and efficient, progress must be made in reducing

computational time, allowing for more Bootstrap replicates. Methodologically,

developing a new method for selecting centroids could be beneficial. Future work

should focus on addressing these two main limitations.
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Chapter 4

Application

I n Chapter 3 a comparison between the newly developed clustering techniques

and existing ones was conducted in order to understand the behaviour of the

different clustering techniques. In this Chapter, the focus shifts to a real case

scenario, specifically the BoAs dataset, with several questions in mind:

• What are the main topics of interest for three different years?

• How have the topics within the papers presented at the conference

evolved over thirteen years?

• Is it possible to identify groups of similar documents within each

corpus? Is it possible to interpret those clusters?

To address these questions, I have decided to focus on the years 2008, 2014, and

2020. An immediate observation is the significant increase in the number of papers

submitted and presented at the conference over time: from just 92 papers in 2008

to 670 in 2014, and 692 in 2020. This is linked to the growing popularity of the

conference.

Following the preprocessing step which directly employed stemming (as opposed

to lemmatization used previously), the vocabularies of the corpora were reduced

to 354 words with 89% sparsity for 2008, 763 words with 93% sparsity for 2014,

and 895 words with 92% sparsity for 2020. It is important to note that each corpus

consists of abstracts, which are generally relatively short texts.
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As in the previous analysis, determining the optimal number of topics for each

corpus is crucial. From Figure 4.0.1, it is evident that the optimal number of topics

for 2008 is approximately 8, for 2014 it is in the range 18 − 22, and for 2020 it is

approximately between the same range. For the last two years, I have tried different

combinations of topics, with the optimal number emerging as 20 in both cases from

an interpretative point of view.

Figure 4.0.1. Coherence scores for the year 2008 (top left), 2014 (top right) and 2020 (bottom

center).
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As a side remark, it is noteworthy that the assumption of independence among

topics from different years was made for simplicity. From a practical standpoint, it

is evident that the topics discussed in one year can influence those in subsequent

years. To mitigate this effect, I have chosen distant years for analysis. However, in

general, a generalized form of LDA, as discussed in [8], can be employed. Lastly,

due to the nature of the corpora, it is likely that some topics may overlap.

Once the optimal number of topics has been determined, it is possible to give an

answer to the first postulated question. A significant difference is the substantial

increase in the number of documents (and subsequently topics) between 2008 and

the other two years. As shown in Table 4.0.1, the topics in 2014 and 2020 are very

similar, indicating that the conference consistently includes papers on these topics.

However, it is challenging to directly compare them with the topics from 2008. The

topics in 2008 can be seen as laying the foundation for the conference’s development,

as many of the topics discussed in 2008 continue to be relevant in subsequent years.

2008 2014 2020

Asymptotics Applied Statistical Analysis Asymptotics

Bootstrap Asymptotics Bayesian Statistics

Clustering Bayesian Statistics Clustering

Fuzzy RV Clustering Causal Inference

Neural Networks Dependency Dependency

Regression Model Financial Market Extreme Value Theory

Sample Survey Functional Analysis Financial Market

Time Series High-Dimensional Functional Analysis

Hypothesis Test High-Dimensional

Mixture Model Hypothesis Test

MLE Machine learning

Multivariate Statistics Microbiome

Optimization Network Analysis

Principal Component Analysis Optimization

Regression Model Regression Model

Robust Methods Stochastic Processes

Stochastic Processes Survey Analysis

Survival Analysis Survival Analysis

Time Series Time Series

Variable-Selection Variable-Selection

Table 4.0.1. Topics’ labels for the three different years
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The interesting part is that each year also features unique topics: for example, in

2008 there were papers on fuzzy random variables while in 2014 there were papers

on robust statistical methods and in 2020 there were more papers on stochastic

processes. Table 4.0.2 shows the papers most similar to the specific topics for each

year.

Title Topic Year

A possible extension of upper and lower probabilities to the

case of fuzzy random variables

Fuzzy RV 2008

General framework for the rotation of units in repeated survey

sampling

Sample Survey 2008

Robust estimation of multivariate scatter with fixed center Robust Methods 2014

E553: Mixtures of skewed distributions with hypercube con-

tours

Mixture Models 2014

E0544: A Bernstein-von Mises theorem for stochastic PDEs Stochastic Processes 2020

E1061: Climate extreme event attribution using multivariate

peaks-over-thresholds modeling and counterfactual theory

Extreme Value Theory 2020

Table 4.0.2. Documents more similar to the specific topic for each year.

Moving to the last question, although it would have been interesting to use the

three new clustering methods developed during this thesis, agglomerative hierarchical

clustering with cosine dissimilarity (computed as the complement to 1 of the cosine

similarity) was employed instead on the normalized version of the TF-IDF matrix.

This choice was made for two main reasons: first, agglomerative hierarchical clustering

is widely used in this context and proved to be one of the most effective methods in

the two previous small examples; second, the computational time required for the

three new clustering methods is too high for this volume of documents.

Figure 4.0.2 shows overall similarity scores for different numbers of clusters in

the three years. According to the plot, the optimal number of clusters is 5 for 2008,

while for both 2014 and 2020, the optimal number of clusters is 10, which is relatively

high. As in the previous application, it is noteworthy that there is a monotonic

relationship between the number of clusters and the overall similarity score.
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Figure 4.0.2. Overall Cosine Similarity for the three different years using HAC-C.

Moving forward to the analysis of the clustering partition for the year 2008,

Figure 4.0.3 and Figure 4.0.4 show the most frequent words within clusters and the

prevalence of topics within clusters. The most frequent words in each cluster can be

interpreted as representing the average document in that cluster (the centroid). From

these plots, it is evident that "Time series" is predominantly discussed in clusters 4

and 5, while "Dependency" and "Fuzzy RV" are related to cluster 1. Additionally, it

appears that cluster 3 is associated with "Clustering" and cluster 2 with "Regression

Model". It is noteworthy to mention that cluster 2 is the one with the greatest size

and it tends to incorporate documents which refer to different documents, so it is

not a "specific" cluster.

Table 4.0.3 provides the papers most similar to each cluster centroid according

to the cosine similarity. In particular, it can be claimed that it gives the same

representation as the previous plot. As a side remark, note that the cosine similarity

between a document and its corresponding cluster centroid tends to be higher when

the cluster size is smaller.
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Figure 4.0.3. Wordclouds of the most frequent words per cluster for 2008

Figure 4.0.4. Significance degree of topics inside clusters for 2008.
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Title Similarity Cluster Cluster size

Fuzzy techniques in the analysis of distributions of real

random variables

0.474 1 28

The estimation of prediction error for neural networks: a

simulation study

0.485 2 46

Probabilistic noise clustering as M-estimators 0.774 3 3

Variable selection for time series forecasting using the group-

wise LARS algorithm

0.5043 4 12

Aggregation of vector ARMA processes: some further re-

sults

0.8286 5 3

Table 4.0.3. Documents with the highest cosine similarity with respect to the cluster

centroid for 2008.

Starting from 2014, a conjoint analysis of Figure 4.0.5 and Figure 4.0.6 allows

for various observations. Firstly, it is evident that there are many "specific" clusters

each linked to one or at most two topics, except for cluster 1 (the largest cluster),

which appears to be more of a noise cluster rather than being topic-specific. In more

detail:

1. Cluster 2 is linked with "Survival Analysis";

2. Cluster 3 is a mix between "Asymptotics" and "Stochastic Processes";

3. Cluster 4 focuses on "Robust Methods";

4. Cluster 5 primarily discusses "Causal Inference";

5. Cluster 6 is a mix between "Time Series" and "Clustering";

6. Cluster 7 addresses "Hypothesis Test";

7. Cluster 8 discusses "Dependency Structure";

8. Cluster 9 primarily addresses the combination of "Causal Inference" and

"Optimization";

9. Cluster 9 is linked to "Financial Market".
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Figure 4.0.5. Topics prevalence inside cluster for 2014.

Figure 4.0.6. Wordclouds of the most frequent words inside clusters for 2014.
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Other topics are discussed to some extent across various clusters, making a

specific assignment difficult. Table 4.0.4 lists the document most similar to the

centroid in each cluster, corroborating the observations mentioned above.

Title Similarity Cluster Cluster size

E903: Hierarchical Bayesian LASSO for a negative binomial regression 0.3897 1 431

E055: An overview of multistate modeling with R 0.601 2 33

E045: Estimation of extreme conditional quantiles through power transfor-

mation

0.589 3 51

E142: Subspace search for outlier detection and description 0.605 4 27

E766: Causal models with hidden variables 0.7309 5 16

E841: Fuzzy probabilistic-distance clustering of time and numerical series

modeled by penalized spline

0.563 6 34

E594: Permutation and randomization tests of parameters 0.633 7 25

E1075: Simultaneous inference in structured additive conditional copula

regression models

0.692 8 15

E645: Algorithms for factorial designs generation 0.835 9 10

E745: Portfolio optimisation under switching dependence 0.541 10 28

Table 4.0.4. Documents with the highest cosine similarity with respect to the cluster

centroid for 2014.

For the year 2020, following the same reasoning applied in the previous two

analyses, observing Figure 4.0.7 and Figure 4.0.8 it can be asserted that all clusters

are linked to specific topics, with the exception of the first cluster, which encompasses

a variety of topics. A more detailed analysis reveals that:

1. Cluster 2 is associated with "Causal Inference";

2. Cluster 3 is a mix of "Survival Analysis" and "Variable Selection";

3. Cluster 4 pertains to "Hypothesis Testing";

4. Cluster 5 discusses "Network Analysis";

5. Cluster 6 is a combination of "Time Series" and "Asymptotics";

6. Cluster 7 addresses "Extreme Value Theory" and "Regression Models";

7. Cluster 8 primarily discusses "Clustering" and "Bayesian Statistics" within the

context of Mixture Models;
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8. Cluster 9 is focused on the "Microbiome," a very specific topic;

9. Cluster 10 refers to "Dependency".

Figure 4.0.7. Topics prevalence inside cluster for 2020.

Figure 4.0.8. Wordclouds of the most frequent words inside clusters for 2020.
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Table 4.0.5 shows the document most similar to each cluster according to cosine

similarity. In conclusion, I can definitively state that the core topics and clusters have

not changed significantly between 2014 and 2020, although in both years there are

some documents that are difficult to cluster effectively. In my opinion, this is because

these documents contain an equal proportion of several topics, which is consistent

with the nature of statistical papers. Consider this thesis, where Topic Modeling,

Hypothesis Testing, Bootstrap Methods, and Clustering have been discussed.

Title Similarity Cluster Cluster size

E0855: Persistence via exact excursion time distributions 0.373 1 411

E0741: Double machine learning for (weighted) dynamic treatment

effects

0.574 2 63

E0509: A nonparametric survival estimation method for dependent

competing risk: An application in relative survival analysis

0.4311 3 83

E0883: Omnibus test for normality based on the Edgeworth expan-

sion

0.5909 4 27

E0256: Community detection for hypergraph networks via regular-

ized tensor power iteration

0.6292 5 28

E0835: Sparse PLS-DA: Clustering time series for art conservation 0.7558 6 22

E1015: On second-order automatic bias reduction for extreme

expectile estimation

0.6324 7 30

E0413: Bayesian clustering of high-dimensional data 0.765 8 14

E0718: Compositional mediation models: Application to micro-

biome data

0.807 9 9

E0849: Grid-uniform copulas and rectangle exchanges: Model and

Bayesian inference for a rich class of copula functionse

0.757 10 10

Table 4.0.5. Documents with the highest cosine similarity with respect to the cluster

centroid for 2020.

Figure 4.0.9 illustrates the assignment of documents to different clusters in the

two-dimensional space obtained using UMAP reduction. Notably, the assignment of

documents for 2014 and 2020 is quite clear, as is the noisy nature of cluster number

1. However, the situation for 2008 appears much less clear.
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Figure 4.0.9. Representation of the documents after a UMAP reduction for the three different

years.
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Chapter 5

Conclusions and final remarks

5.1 Future work and possible extensions

D uring this thesis, various techniques were explored and discussed in detail,

both from theoretical and practical perspectives. Moreover, a novel approach

to document clustering has been explored, leveraging the p-value associated with

the homogeneity of topic distributions within documents. The foundational idea,

inspired by [35], is intriguing. It is important to mention that the impact of changing

the test statistic from the Kullback-Leibler divergence to the Bhattacharyya distance

on the estimated p-value has been studied obtaining similar results in a reduced

setup. Then, the estimated p-value has been employed as a similarity measure for

subsequent analysis, attempting to develop a test-based clustering procedure as well

as two other techniques which relies on agglomerative hierarchical clustering and

fuzzy relational clustering.

Overall, the concept of comparing documents based on their topics offers a fresh

perspective, moving away from traditional methodologies in the field. Additionally,

this approach provides improved explanations and interpretations of the clustering

results.

The results obtained in Chapter 3 reveal that these new techniques exhibit

behavior similar to well-known methods in the literature (presented in Chapter 2),

although they were not the optimal solution for the problem in any of the considered
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examples. Additionally, the relatively small size of the corpora raises questions about

the reliability of the results. From an interpretive standpoint, they enhance the

understanding of how documents are clustered based on their topics. Conversely, it

has also been demonstrated that Spectral Clustering and agglomerative hierarchical

clustering perform well in this particular field, as highlighted in the literature.

There are several limitations to these new techniques:

1. computational time - the computational time required to compute the

Bootstrap replicates for the approximation of the p-value. This can dramatically

impact all subsequent clustering analyses. The reliance of these methods on

LDA significantly slows down computations, suggesting it might be beneficial

to explore other topic modeling techniques and redefine the strategy used. In

order to be able to prove the efficiency of the methods, this would be the main

issue to solve;

2. reliance on BOW mechanism - according to me, a minor issue is the

reliance on a BOW mechanism, which may fails to capture the linkage and

semantics between words. To mitigate this problem, although it cannot be

fully solved, I included bigrams and trigrams in the preprocessing step;

3. centroid definition - it is important to note that in both the procedure to

estimate the p-value and the LUC method, the centroid is obtained merely by

summing the corresponding rows in the DTM. It is crucial to develop a new

method for creating the cluster centroid;

4. static procedure - time is not directly considered in the analysis, but topics

may change over time, making it overly simplistic to ignore temporal factors.

Therefore, the procedure for estimating the p-value (affecting the clustering

procedure) should be modified to account for time, for instance by employing

the dynamic version of LDA [8].

Lastly, it is crucial to emphasize that a new internal cluster validity index needs

to be defined for document clustering, as existing indices are not perfectly suitable
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for selecting the number of clusters in this particular domain. This remains an open

problem in the field, as evidenced by the publication of [48].

Moving forward, in Chapter 4, a real case scenario was discussed, applying

agglomerative hierarchical clustering using cosine dissimilarity. The study focused

on how topics evolved in the CMStatistics conference and defined "folders" of similar

documents according to those topics. Notably, 2008 laid the foundations for the

conference, and the main topics remained consistent in 2014 and 2020

In conclusion, there is significant potential for further development of these new

methods, as they are not yet suitable for real-life applications. In particular, a new

approach must be found to reduce computational costs without substantially altering

the original idea.

5.2 AI Usage

Throughout the course of this thesis, the use of chatbots and, more generally,

large language models has been minimal. Specifically, I have only employed them

[53, 18] to make occasional corrections to the English language.
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Appendix A

Code Appendix

• Matrix of p-values.

1 p_ value _ matrix = function (ind , m, dtm , k, B, theta ){

2 #’ @param ind description : indices to consider in the document -term

matrix

3 #’ @param m description : empty matrix of size M x M

4 #’ @param k description : number of topics for LDA

5 #’ @param B description : number of Bootstrap replicates

6 #’ @param theta description : document topic matrix obtained fitting

LDA

7

8 num_ cores = detectCores ( logical = T) -1

9 plan( multisession , workers = num_ cores )

10 message (" Number of parallel workers : ", nbrOfWorkers ())

11 # Start the parallelized session

12 iter = 1

13 for (i in seq_len(nrow(ind))) {

14 cat("We are at the iteration number ", iter , "over", nrow(ind), "\n")

15 m[ind[i ,1] , ind[i ,2]] = boottest _ similarity (dtm = dtm , index1 =

ind[i, 1], index2 = ind[i ,2] , k = k, B = B, theta =

theta )$ pvalue

16 # compute the Bootstrap pvalue

17 m[ind[i, 2], ind[i ,1]] = m[ind[i ,1] , ind[i ,2]] # assign the

computed value to the element in the lower triangular matrix

18 iter = iter + 1

19 }

20 return (m)

21 }
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• Test based clustering method.

1 clustering _ method = function (mat , dtm , alpha , B, k){

2 #’ @param mat description : starting p- values matrix

3 #’ @param dtm description : initially document term matrix

4 #’ @param alpha description : significance level

5 #’ @param B description : Bootstrap replicates

6 #’ @param K description : number of topics

7

8 M = ncol(mat)

9 partizione = lapply (1:M, function (x) list(x)) # save the partition

for each iteration

10 colnames (mat) = paste (" Cluster ", sep = " ", seq_len(M))

11 storage = matrix (0, nrow = 1, ncol = M) # store clusters

12 colnames ( storage ) = colnames (mat)

13 p_ values = numeric (M) # save merging height

14 au = colnames (mat)

15 cluster = 1

16 iter = 1

17 partizione [[ iter ]] = storage # save the trivial partition

18

19 while (any(mat[ upper .tri(mat) == T] >= alpha ) & (iter < M -1)) {

20 # while there exists a p_ value greater than alpha

21 iter = iter + 1

22 cat(" Iteration number ", iter , "/", M, "\n")

23 inde = which ( upper .tri(mat) == T & mat == max(mat), arr.ind =

T)[1 ,] # find the documents corresponding to the highest pvalue

24 p_ values [iter] = max(mat) # save this value

25

26 # Storage procedure :

27 # - find the names of the clusters ;

28 # - merge them in the storage value according to the rule below

29 r = au[inde [1]]

30 r2 = au[inde [2]]

31 if ( storage [1, r] == 0 & storage [1, r2] == 0){

32 storage [1, r] = cluster

33 storage [1, r2] = cluster

34 cluster = cluster + 1}

35 else if ( storage [1, r] > 0 & storage [1, r2] == 0) {

36 storage [1, r2] = storage [1, r]}

37 else if ( storage [1, r] == 0 & storage [1, r2] > 0) {

38 storage [1, r] = storage [1, r2] }

39 else if ( storage [1, r] > 0 & storage [1, r2] > 0) {

40 storage [ storage == storage [1, r2 ]] = storage [1, r] }

41
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42 partizione [[ iter ]] = storage # save the obtained partition

43

44 if (iter == M -1) { break }

45

46 dtm[inde [1] , ] = apply (dtm[c(inde [1] , inde [2]) , ], 2, sum) # merge

the two documents in the Document Term matrix

47

48 dtm = dtm[-c(inde [2]) , ] # delete the second document from the

Document Term matrix

49

50 au = au[au != r2] # delete from the list of all the clusters the

one that has been merged

51

52 dtm = as.dfm(dtm)

53 mat = mat[-c(inde [2]) , -c(inde [2])] # delete from the matrix of

pvalue the row and the column of the cluster that has been

merged

54 # We need to compute the pvalues between the new document and the

remaining ones

55

56 s = seq(from = 1, to = ncol(mat)) # define the sequence of all the

remaining clusters excluding the newly formed

57

58 s = s[s != inde [1]]

59

60 index = data. frame (rep(inde [1] , length (s)), s)

61 # This part of code is needed due to the fact the function pvalue

matrix relies on another function that work exclusively when

index1 > index2

62 for (i in 1: nrow( index )) {

63 if ( index [i, 1] > index [i, 2]) {

64 aux = index [i, 1]

65 index [i, 1] = index [i, 2]

66 index [i, 2] = aux

67 }

68 }

69 z = LDA(dtm , k = k, method = " Gibbs ",

70 control = list( alpha = 1/k, iter = 1000) ) # fit LDA with

the new Document Term matrix

71 theta = z@gamma

72 mat = p_ value _ matrix (ind = index , m = mat , dtm = dtm , k = k, B = B,

theta = theta ) # compute the pvalue between the newly formed

cluster and the others

73 }
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74 plan( sequential ) # stop the parallelized procedure

75 print (" Resting my workers ")

76 results = list( clustering = storage , height = p_values , partition =

partizione )

77 return ( results )

78 }

• Overall similarity:

1 Cosine _ Similarity = function (theta , sizes , pred , values ){

2 #’ @param theta description : original DTM

3 #’ @param sizes description : numebr of elements inside each cluster

4 #’ @param pred description : estimated membership belonging of a unit

to a cluster

5 #’ @param values description : unique clusters .

6 M = sum( sizes )

7 k = length ( sizes )

8 sim = numeric (k)

9 for (i in 1:k) {

10 if( sizes [i] == 1){

11 centroid = theta [pred == values [i], ]

12 sim[i] = cosi( theta [pred == values [i], ], centroid )

13 }

14 else{

15 centroid = apply ( theta [pred == values [i], ], 2, mean)

16 sim[i] = mean( apply ( theta [pred == values [i], ], MARGIN = 1, cosi ,

centroid ))

17 }

18 }

19 ov = sum(sim *( sizes /M))

20 return (ov)

21 }
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