
MASH Department

Bayesian modelling of football outcomes

Professors:

Robin Ryder

Julien Stoehr

Guillaume Kon Kam King

Student:

Gian Mario Sangiovanni

Academic Year 2023/2024



Contents

1 Introduction 1

2 Descriptive analysis 3

2.1 Main ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Heuristic Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Static Models: theory and acknowledgments 17

3.1 Bayesian Hierarchical model without covariates . . . . . . . . . . . . . 19

3.2 Bayesian Hierarchical model with covariates . . . . . . . . . . . . . . . 22

3.3 Zero-Inflated Bayesian Hierarchical model . . . . . . . . . . . . . . . . 24

3.4 Modified Zero-Inflated Bayesian Hierarchical model . . . . . . . . . . . 26

3.5 Extra: Explanatory Model . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Static Models: results and research questions 37

4.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Which is the impact of the offensive and defensive parameter? . 38

4.1.2 Does a ”home” effect really exist? Is it linked to the attendance? 40

4.1.3 Are covariates really useful to understand the outcome of a

football match? . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.4 Inflation factors: a comparison. . . . . . . . . . . . . . . . . . . 43

4.1.5 Deviance of the models: a comparison among different trials. . . 46

4.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Which is the behaviour of our model during the season? . . . . 47

4.2.2 Are we able to approximate the marginal distributions? . . . . . 55

4.2.3 Are we able to study the joint distribution? Are we able to

understand if a team is going to win/lose/draw? . . . . . . . . . 57

5 Dynamic Model 61

5.1 Rjags setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Evolution Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.1 Which is the impact of the offensive and defensive parameter? . 66

5.3.2 Does a ”home” effect really exist? . . . . . . . . . . . . . . . . . 68

5.3.3 Are we able to approximate the marginal/joint distributions? . . 69

5.4 Is really useful to consider separately attacking and defensive abilities? 70

6 Bonus Section: Goals Difference 72

7 Conclusion 77

7.1 AI Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



A Plots Appendix i

B Codes Appendix xii



1 Introduction

In the ever-evolving realm of sports analytics, the application of Bayesian modeling

has emerged as a powerful tool for unraveling the intricate tapestry of football outcomes

[1], [5], [11], [8]. Originating in the fields of Victorian England [2], football has

since evolved into a global spectacle, captivating audiences with its unpredictability,

which has always fascinated enthusiasts, analysts, and statisticians alike. Leveraging

Bayesian inference techniques, this project delves into the depths of football dynamics,

aiming to demystify the uncertainties surrounding match predictions and player performances.

As the sporting world adopts increasingly sophisticated approaches to gain a competitive

edge, Bayesian modeling [17] offers a unique perspective by seamlessly incorporating

prior knowledge and updating it with new data.

Football, with its multifaceted variables and inherent unpredictability, poses a

fascinating challenge for statistical modeling. Traditional frequentist models often

fall short in capturing the nuanced interactions within a game. Here, we turn to

the Bayesian paradigm, acknowledging and embracing uncertainty as an integral part

of the footballing narrative. While my focus lies in the mathematical intricacies of

Bayesian modeling, it is indeed possible to recognize the richness of football as a human

experience. This project transcends the numerical realm to appreciate the emotional

narratives, tactical innovations, and the sheer unpredictability that makes every match

a spectacle. As you navigate through the complexities of football outcomes, I invite

you to join me on this exploration, where equations and distributions meet the roar

of the crowd, and where probabilities dance in tandem with the elegant movements

of the ”bomber” on the pitch. In the pages that follow, I unveil the methodology

used, discuss the implementation (Appendix B), and share the insights gained from

applying Bayesian modeling to football. In Section 2, a descriptive analysis of the

selected dataset is provided, along with general ideas about the distributions that can

be used to fit the number of goals scored by home and away teams in a match. A

question arises:

Why do i choose English Premier League?

As specified before, the very roots of football trace back to the green fields of

Victorian England, where the working class, fueled by a desire for recreation, gave

birth to an unstructured chaotic version of the sport. The formalization of rules,

notably the Cambridge Rules of 1848 [3], marked a pivotal moment in the evolution of

football. The establishment of standardized regulations facilitated the spread of the

game, transforming it from a local pastime into an organized sport. English football

clubs, many of which boast a heritage dating back to these formative years, became

the crucibles of innovation, refining tactics and shaping the beautiful game into the

structured sport recognized today.
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Section 3 introduces useful tools for analysing MCMC algorithms and the theory

related to the ”static” models that will be used. The term ”static” refers to the

assumption that time is not taken into account and all matches are considered exchangeable,

which is a strong assumption. Section 4 is dedicated to presenting the results obtained

by applying the models defined in the previous section. Specifically, I will attempt

to answer some open research questions regarding the parameters involved in the

model. Section 5 is expressly allocated to the theoretical elucidation and exposition

of the results associated with the Dynamic model. This comprehensive treatment

encompasses considerations within the realm of discrete time, rather than continuous

time. Lastly, Section 6 tries to change perspective with a huge focus on the goals

difference modelling.
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2 Descriptive analysis

2.1 Main ideas

The dataset pertains to theEnglish Premier League (EPL) data from the 2018/2019

season, sourced from the public repository footystats . A generic match is organized as

follows:

Ht At Attend GW Htg Atg Htc Atc Htyc

Manchester

City

Liverpool 54511 21 2 1 2 1 4

Atyc Htrc Atrc Htf Atf Htp Atp Hts Ats

2 0 0 12 7 49 51 9 8

Table 2.1: Generic row of the English Premier league dataset.

where:

• Ht and At represent respectively the home and the away teams;

• Attend represents the number of spectators to the match;

• GW represents the week of the game;

• Htg and Atg represent respectively the goals scored by the home and away teams;

• Htc and Atc represent respectively the number of corners taken by the home and

away teams;

• Htyc (Htrc) and Atyc (Atrc) represent the number of yellow (red) cards taken

by the home and away teams;

• Htf and Atf represent respectively the number of fouls committed by the home

and away teams;

• Htp and Atp represent the percentage of ball possession for the home and away

teams;

• Hts and Ats represent the number of shots of the the home and away teams.

In addition to these factors, two additional variables have been determined indicating

the rank of the respective teams prior to the match. It is of particular interest

to consider this information as a significant and impressive confrontation occurred

between Manchester City and Liverpool during the season, whereby the former finished

with 98 points and the latter with 97. In the league, there are twenty teams that

have played for a total of 380 games over thirty-eight non-consecutive weeks. The

first match, which involved Manchester United and Leicester City, kicked off on 10th

August, whereas the last match between Watford and West Ham United was played
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on 12th May. It is noteworthy that the top scorers were Aubameyang (A), Manè (L),

and Salah (L) who have each scored twenty-two goals. A final comment pertains to

the observation that Liverpool has lost solely one match (Table 2.1).

Pos Team Pld W D L GF GA Pts

1 Manchester City (C) 38 32 2 4 95 23 98

2 Liverpool 38 30 7 1 89 22 97

3 Chelsea 38 21 9 8 63 39 72

4 Tottenham Hotspur 38 23 2 13 67 39 71

5 Arsenal 38 21 7 10 73 51 70

6 Manchester United 38 19 9 10 65 54 66

7 Wolverhampton Wanderers 38 16 9 13 47 46 57

8 Everton 38 15 9 14 54 46 54

9 Leicester City 38 15 7 16 51 48 52

10 West Ham United 38 15 7 16 52 55 52

11 Watford 38 14 8 16 52 59 50

12 Crystal Palace 38 14 7 17 51 53 49

13 Newcastle United 38 12 9 17 42 48 45

14 Bournemouth 38 13 6 19 56 70 45

15 Burnley 38 11 7 20 45 68 40

16 Southampton 38 9 12 17 45 65 39

17 Brighton & Hove Albion 38 9 9 20 35 60 36

18 Cardiff City (R) 38 10 4 24 34 69 34

19 Fulham (R) 38 7 5 26 34 81 26

20 Huddersfield Town (R) 38 3 7 28 22 76 16

Table 2.2: English Premier League Table 2018/2019. The first four teams have qualified for the Champions League

group stage, the next three teams have qualified for the Europa league group stage, while the last three teams were

relegated to the Football League Championship.

Despite of those interesting stats, my goals are:

1. to understand which are the factors that can influence the outcome of an English

Premier League football match;

2. to understand whether or not it is possible to predict match outcomes with a

certain degree of certainty.

First of all, let’s examine the number of goals scored by home and away teams. Based

on the two graphs presented, it is evident that the number of goals scored during a

football match ranges from 0 to 6, however, teams are unlikely to score over 3 goals

per game. Additionally, away teams are more inclined to score 0 goals as opposed

to home teams. The occurrence of the ’{team scores 0 goals}’ event is particularly

intriguing to examine. A comparison of team performances during both home and

away matches for goals scored can be inferred from the information presented in the

two graphs below (Figure 2.1). Objective data pertaining to the distribution of goals

scored in the top five leagues at home and away locations is provided in the appendix

A. The data was sourced from the website Sports-Statistics.
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Figure 2.1: Relative frequency of the goals scored by the home (top left) and away (top right) teams. Relative

frequency of zero scored goals for the home team (bottom left) and for the away team (bottom right).

As a side note, it is worth mentioning that Huddersfield Town, Cardiff City

and Fulham are the teams that have the most frequent occurrence of no goals being

scored during home and away matches, whereas Manchester City and Liverpool

have the least. Additionally, Figure 2.2 displays a clear division in stadium attendance

between top teams who possess large contemporary stadiums and middle to lower

teams with smaller ones. It is unclear whether the capacity of a stadium or the

passion of fans has a greater impact on the number of goals scored [21]. Passion refers

to the emotional attachment that fans feel for their team. This phenomenon is typically

associated with small and medium-sized clubs, although England is a notable exception
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due to the prevalence of hooliganism (though this is not the case for Manchester

City and Newcastle United). This observation suggests that a ”home” effect may

exist, which could affect the scoring rates of both the home and away teams.

Figure 2.2: Average Attendance per team during the English Premier League season 2018/2019. Manchester United

is the team with the highest average attendance while AFC Bournemouth is the one with the lowest average attendance

Based on the previous analysis, the stadium attendance was divided into two classes

using the quantile at level 0.66. The first class includes lower and middle clubs with

small stadiums, while the second class includes bigger teams. A Kruskal test was

conducted, resulting in a p-value of 1.034× 10−06, indicating a significant difference in

the median of goals scored by home teams based on stadium attendance.

Figure 2.3: Goals scored by the home teams with respect to the size of their stadium.
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To gain a deeper understanding of this effect, it is essential to conduct a thorough

analysis of the home and away performances of various teams. As suggested by [22],

the home and away strength can be measured using the following method:

1. Home attacking strength = average home scored goals / league average;

2. Home defensive strength = average home conceded goals / league average;

3. Away attacking strength = average away scored goals / league average;

4. Away defensive strength = average away conceded goals / league average.

Define the general strength as the vector which takes into account the four indexes.

For instance, giving a look to the Figure 2.4, it is possible to observe two different

situations:

1. on one hand,Manchester City strength is (1.9127517, 0.5042017, 1.5966387, 0.3691275).

Offensively, it seems that Manchester City tends to performer better at

home, while defensively it seems that it performs better when away from Etihad;

2. on the contrary, the strength of Huddersfield town is (0.3355705, 1.3025210, 0.5042017

1.5100671). It is noteworthy that the team is inclined towards scoring better

on their away games, while manifesting a stronger home defense (conquering

Kirklees is no mean feat).

Figure 2.4: Home strength (left). Away strength (right). On the x-axis is plotted the offensive one, while on the

y-axis is plotted the defensive.

In predicting the outcome of a football match, there are several factors that may

influence it, beyond the home advantage as previously mentioned [19]. One among

those factors is the team’s playing style, which is dependent on the coach’s ideas and
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may vary throughout the season. On one hand, a team that adopts a defensive strategy

is more likely to secure a draw or a narrow victory, whereas an offensive team may

score more goals but at the risk of conceding more. On the other hand, a team that

prefers ball possession over allowing opponents to have it can create more goal-scoring

opportunities and be more dangerous. Additionally, this strategy limits the opponents’

ability to express their own style of play, resulting in fewer defensive risks.

Using ball possession as an indicator of playing style, Figure 2.5 analysis shows

that top-ranked teams typically prefer to maintain possession of the ball and assert

their dominance over the game. Conversely, lower-ranked teams tend to adopt a more

defensive approach. Supporting this theory, there is a correlation of approximately

0.22 between the goals scored by the home team (away team) and the percentage of

ball possession maintained during the game by the home team (away team). 1.

Figure 2.5: Average percentage of ball possession at home vs average home scored goals (left). Average percentage

of ball possession away vs average away scored goals (right)

By using the number of corners and shots taken as indicators of a team’s performance,

it is possible to gain insight into the situation of different teams (Figure 2.6). Generally,

higher-ranked teams take more corners and shots towards the goal, resulting in fewer

goals conceded. Conversely, lower-ranked teams tend to take fewer corners and shots,

leading to more goals conceded. The data shows a correlation of approximately 0.37

between the number of goals scored by the home team (away team) and the number

of shots. However, there is only a weak correlation of approximately 0.05 between

the number of goals scored by the home team (away team) and the number of taken

corners.

1In the appendix, it is possible to find the correlogram
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Figure 2.6: Average home taken corners vs average home scored goals per team (left). Average away taken corners

vs average away scored goals per team (right).

Discipline can have a significant impact on a team’s performance, both individually

and collectively. To measure this, the number of yellow and red cards, as well as the

number of fouls committed by the team during the match, should be considered. The

Table 2.3 demonstrates a low negative correlation between a team’s goals scored and

its discipline.

goals/card yellow red

home −0.115 −0.037

away 0.0264 −0.051

goals fouls

home −0.061

away −0.029

Table 2.3: Correlation between the number of taken cards (either yellow or red) and the number of scored goals

(either scored by the home or away team (left). Correlation between the number of fouls committed by the team and

the number of goals scored by the team (right).

As can be seen from Appendix A, the situation is now a little more complicated to

interpret. For example, if I consider only the top 5 teams, it can be seen that while

Liverpool and Manchester City concede and commit few fouls, Chelsea tends

to concede more and still commit few while Arsenal tends to concede and commit

more. Tottenham stands at the league average for both items. As far as cards are

concerned, the trend remains valid. Note how Arsenal tends to be an undisciplined

team.
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Figure 2.7: Average home yellow cards vs average home scored goals (left). Average away yellow cards vs average

away score goals (right).

One last factor that can be considered is the overall shape of a team, which

may in turn be influenced by several factors regarding injuries, team mentality, team

tiredness, changes in team composition, etc. However due to the lack of data, it is not

so easy to define it into a proper way but it can be regarded as a sort of latent effect

which affects the performances of teams. Several indicators can be defined to measure

a team’s condition at the time of a match 2.

• Recent scoring condition of a team (RSC). Average goals scored by a team over

the past 5 weeks;

Figure 2.8: Each line represents the rolling mean of order 5 of the scored goals by a team during the season.

2usually 5 is chosen as an upper bound to reflect the condition of a team.
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• Recent defensive condition of a team (RDC). Average conceded goals by a team

over the past 5 weeks.

Figure 2.9: Each line represents the rolling mean of order 5 of the conceded goals by a team during the season.

• Quality of opponents (QO). Average obtained points by all the opponents of a

team in the past 5 weeks.

Figure 2.10: Each line represents the rolling mean of order 5 of the points obtained by the opponents of a team

during the season.

• Elo rating of a team (ELO)[9]. It is based on a generalization of the Elo system

used by the FIDE3 in the chess world[6]. The authors of the paper said that:

We do not make use of the FIFA ranking (which is simply Elo ranking

since July 2018), because the calculation of the FIFA ranking changed

3Fédération Internationale des Échecs
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over time and the Elo ranking is more widely used in football forecast

models.

Figure 2.11: Each line represents the elo points before each game for a team during the season.

To adapt it to sports needs, Elo rating can be reformulated in this new version:

∆ELO = K ·G (W −Wϵ)

where:

• ∆ELO = ELOafter − ELObefore.

• K is a weight which affects the magnitude of the variation of the Elo. ClubElo

suggests as value of 20 in order to mitigate the possible variation.

• G =


1 draw or 1 goal difference between the two teams

3
2

goal difference between the two teams is 2

1+f
8

goal difference between the two teams is f

• W =


1 win

0.5 draw

0 defeat

• Wϵ =

(
10−

(ELObefore−ELOopp)

400 + 1

)−1

. It considers the Elo of the two teams before

the match.

I have taken the Elo ratings for all the teams involved in the competition from

elofootball considering as reference year the season 2017/2018. The Elo points were
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updated dynamically based on the match score. For example, when considering

Leicester City, their performance throughout the season appeared to fluctuate,

with a notably negative period between the 22nd and 27th game week. During this

period, they only gained one point, scoring an average of 1.2 goals and conceding an

average of 2.6 goals. However, they experienced a particularly positive period between

the 29th and 33rd game week.

Figure 2.12: Time series of the ranking positions (left) and time series of the gained points (right) for Leicester

City, Manchester City, AFC Bournemouth, Wolverhampton Wanderers, Chelsea, Liverpool

2.2 Heuristic Ideas

Taking into account the existing literature [17], Poisson distribution (as well as

Negative Binomial have been considered as a coherent distribution to describe and

model the number of goals. Assuming that 4:

• yh[g]|θ ∼ Poisson(θ) g = 1, . . . , 380;

• ya[g]|λ ∼ Poisson(λ) g = 1, . . . , 380

it is well known that the mean and the variance of each random variable are equal

to the corresponding Poisson parameter, namely E[yh[g]|θ] = θ and V[yh[g]|θ] = θ.

Furthermore, the maximum likelihood estimator for the Poisson parameter is the

sample mean. It seems that the Poisson distribution can be a good choice to model

the number of goals, even though in general it tends to underestimate the probability

of observing a zero and overestimate the probability of observing a one.

In order to solve the first problem, a more recent approach [9] has used the Zero-inflated

4From now on h[g] and a[g] represent respectively the home and the away team in the g-th game.
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Poisson distribution to model the scored goals. The basic idea is that the event of

scoring 0 goals can be regarded as a sort of special event and so a probability mass

in zero is added. Formally, if X|θ, ω ∼ ZIP(θ, ω) 5, then:

P
(
X = x|θ, ω

)
= ωI{x = 0}+ (1− ω)

e−θθx

x!
ω ∈ [0, 1], θ ∈ ℜ+ (1)

where ω is known as the inflated parameter and it has an influence also on the mean

and on the variance of a Poisson random variable. In fact, E
[
X|θ, ω

]
= θ (1− ω) and

V
[
X|θ, ω

]
= θ(1− ω)(1 + θω).

Figure 2.13: On the first row, it is placed the relative frequency of Home team goals compared to the maximum

likelihood estimation under a Poisson distribution assumption (top left) and to an euristic estimation under a ZIP

distribution (top right) with ω = 0.03. On the second row, it is placed the relative frequency of Home team goals

compared to the maximum likelihood estimation under a Poisson distribution assumption (bottom left) and to an

euristic estimation under a ZIP distribution (bottom right) with ω = 0.04.

5It does not exist a closed form for the maximum likelihood estimator, so I decide to use the

sample mean for the parameter θ and fixed values for the parameter ω.
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θ̂ λ̂

MLE 1.568 1.253

Table 2.4: Maximum likelihood estimates for the parameters of two Poisson distributions used to model the home

and away scored goals.

As shown in Figure 2.13, the use of the modified Poisson distribution helps to mitigate

the issue of underestimating 0 and overestimating 1. However, it is important to

address another issue: the possibility of a correlation between the number of goals

scored by the two teams. If a team focuses solely on the offensive side, they may

be less attentive to their defensive play, resulting in more goals being scored by their

opponents. Conversely, if a team is highly focused on defensive play, it can negatively

impact the offensive performance of both teams. In this framework, the correlation

value is -0.178, indicating that when the home team scores a goal, it is more likely that

the away team will not score. Furthermore, a correlation test was conducted using

Pearson’s product moment correlation coefficient. The obtained p-value of 0.0004

allows us to reject the hypothesis of the absence of correlation. It is important to

consider this result as it could significantly impact the validity of the analysis.

After considering these factors, it is important to focus on the joint analysis of

the two teams, which can be a challenging task. Several attempts have been made

to estimate the joint distribution of scored goals. For example, [10] uses a Bivariate

Poisson distribution that explicitly takes into account a possible correlation effect.

Figure 2.14: Relative frequency of the games’ outcomes

Assume that Xk ∼ Poisson(θk), k = 1, 2, 3, and define X = X1 + X3 and Y =
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X2 +X3. Then, (X, Y ) follows a Bivariate Poisson distribution BP(θ1, θ2, θ3).

P(X = x, Y = y) = e−(θ1+θ2+θ3)
θx1θ

y
2

x!y!

min(x,y)∑
l=0

(
x

l

)(
y

l

)
l!

(
θ3
θ1θ2

)l

(2)

θ̂1 θ̂2 θ̂3

MLE 1.568 1.253 6.5× 10−6

Table 2.5: Maximum likelihood estimates for the parameters of the Bivariate Poisson distribution used to model

the home and away scored goals.

The previous formulation was introduced by [10] and it is particularly effective for

two reasons:

• marginally, the two random variables are Poisson distributions with E[X] =

θ1 + θ3 and E[Y ] = θ2 + θ3;

• θ3 is a measure of the covariance between the X and Y . In particular ρ(X, Y ) =
θ3√

(θ1+θ3)(θ2+θ3)
.

Figure 2.15: Relative frequency of the games’ outcomes compared to the probabilities of the same events where the

parameters are obtained via the maximum likelihood estimator.
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3 Static Models: theory and acknowledgments

In the following section, several models will be discussed. All the different models use

a Gibbs Sampler in order to draw samples from the target posterior density. The R

code can be found in the appendix B. I have decided to use common values for the

hyper-parameters of the MCMC method. In particular:

1. the number of iteration is 10000;

2. the number of discarded samples for the burn-in is 1000. It is used to ensure

that the samples are drawn under the target posterior distribution;

3. the ratio of thinning is 1 accepted sample over 10. Thinning is used in order to

obtain independent samples;

4. the number of run chains is 2. I have chosen to run multiple chains in order to

check for convergence and stationarity.

In order to check for the convergence and the stationarity of the simulations, i have

used the Gelman Rubin statistic. Knowing that 2 chains are run for each model,

denote θ̄j the average value for the parameter in the j-th chain. Define:

• B = N
2∑

j=1

(θ̄j − θ̄)2 as the Between variance;

• W = 1
2

2∑
j=1

 1

N − 1

N∑
i=1

(θ
(j)
i − θ̄j)

2

 as the Within variance;

• R =
N−1
N

W+ 1
N
B

W
as the Gelman Rubin statistic. When the sample tends to

increase, the between variance tends to 0 and R tends to 1.

It might seem obvious, but it is important that the samples obtained from the simulation

are independent, otherwise it is not possible to use them to rely on the estimation of

important features due to the lack of convergence. A tool that can be used to assess

the ”power” of an MCMC method is the Effective sample size:

ESS =
N

1 + 2
∑∞

k=1 ρk

where N is the sample size and ρk is the correlation at lag k. ESS represents the

number of independent samples with the same estimation power as the N correlated

samples.

To add another level of control, traceplots and running mean plots of the parameters

are checked, while to study the among samples correlation, autocorrelation plots are
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proposed . Given the large number of parameters within the different models, it would

be impossible to report all the diagnostics in the results subsections. For each model,

a table showing summary statics, ESS, and R̂ for the involved parameters is placed in

the Appendix A.

The comparison of different models will be pursued through theDeviance Information

Criteria, also known as DIC. It can be considered as a generalization of the Akaike

Information Criteria. More formally, define:

• P as the number of variables involved in the model;

• y as the observed values;

• θ as the parameter of the model;

• f(y|θ) as the likelihood of the model;

• D(y, θ) = −2 log(f(y|θ)) as the deviance of the model.

Then, the introduction of other two quantities is needed [18]:

1. Posterior mean deviance 6

DAV G = E[D(y|θ)] =
∫
Θ

D(y|θ)π(θ|y)dθ =

∫
Θ

−2 log(f(y|θ))π(θ|y)dθ

2. D(y, θ̂), which represents the deviance evaluated at a particular θ value (usually

the posterior mean).

The difference between the two quantities (PD) represents the effective number of

parameters, which is used to measure the model complexity. Furthermore, the DIC

can be computed as follows:

DIC = DAV G + PD = 2DAV G −D(y, θ̂)

It has a close resemblance with the AIC, in fact they are both penalized likelihood

criteria. Roughly speaking, when two or more models are compared, the one with the

lower DIC is chosen because that model has a good balance between goodness of fit

and number of involved parameters.

Another tool that can be used to assess the goodness of fit of a model is the Posterior

Predictive distribution. Denoting ỹ as a new value, the definition of the previous

distribution is straightforward:

f(ỹ|y) =
∫
Θ

f(ỹ, θ|y)dθ =

∫
Θ

f(ỹ|θ)π(θ|y)dθ (3)

6Note that it is pretty easy to estimate this quantity. In fact, when an MCMC method is used, it

can be approximated by the average of the simulated values.
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3.1 Bayesian Hierarchical model without covariates

In the paper [1], the authors suggest to use of a Bayesian hierarchical structure to

model the number of goals scored during a match by two teams because it allows to

take into account relations between variables using common distributions for a set of

relevant parameters. Furthermore, they affirm that:

Within the Bayesian framework the use of the more complex bivariate

structure is not essential to allow for correlation. [. . . ] Correlation is taken

into account since the observable variables are mixed at an upper level.

Denoting g = 1, . . . , 380 as a generic game and w = 1, . . . , 20 as a generic team, the

model can be formalized as follows:

• yg,1 represents the number of goals scored by the home team in the g-th game;

• yg,2 represents the number of goals scored by the away team in the g-th game;

• yg,1, yg,2|θg,1, θg,2
C.I
= yg,1|θg,1 · yg,2|θg,2;

• yg,1|θg,1 ∼ Poisson(θg,1) and yg,2|θg,2 ∼ Poisson(θg,2);

• θg,1 and θg,2 represent the scoring intensities of the home and away teams;

•

log(θg,1) = home+ atth[g] + defa[g]

log(θg,2) = atta[g] + defh[g]

They suggest to use aPoisson-log normal with random effects. The log transformation

is used to ensure the positiveness of the scoring intensities. The involved parameters

have an easy interpretation:

• home represents the advantage for a team hosting the game;

• att represents the attacking ability of a team. In particular, it can be interpreted

as the difference in a team’s propensity to score compared to the average effect in

the league. A high positive value indicates a team with a high attacking ability,

while a high negative value indicates a team with a low attacking ability;

• def is the defensive ability of a team. As before, it can be interpreted as the

differential defensive propensity of a team relative to the average effect in the

league. Due to the structure of the regression equations, negative values imply

a better defensive attitude than positive values.

Those abilities, as well as the home effects, cannot properly be measured, so they can

also be interpreted as random latent effects which affect the scoring propensity of a

team 7. The main hypothesis of the model is that they remain constant over the entire

7Note that ag and hg allow to uniquely determine each team.
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season for all the teams.

The likelihood of the model can be written:

L (θ) = f
(
y1,1, y1,2, . . . , y380,1, y380,2|θ1,1, θ1,2, . . . , θ380,1, θ380,2

)
c.i
= f

(
y1,1, . . . , y380,1|θ1,1, . . . , θ380,1

)
· f
(
y1,2, . . . , y380,2|θ1,2, . . . , θ380,2

)
i.d
=

380∏
g=1

f
(
yg,1|θg,1

)
· f
(
yg,2|θg,2

)
Priors for the parameter have been chosen in a suitable way, i.e. to allow for conjugacy.

For simplicity’s sake, those random variables are assumed to be independent from each

other.

home ∼ N(0, 0.0001)

attw ∼ N(µatt, τatt) w = 1, . . . , 20

defw ∼ N(µdef , τdef ) w = 1, . . . , 20

π (home, att1, . . . , att20, def1, . . . , def20)
i
= π (home)

20∏
w=1

π (attw) π (defw)

As pointed out by the authors, in order to avoid identifiability issues, a reference point

parametrization is used:

20∑
w=1

attw = 0 ⇔ att1 = −
20∑

w=2

attw (4)

20∑
w=1

defw = 0 ⇔ def1 = −
20∑

w=2

defw (5)

The hyperpriors are modelled independently using non-informative distributions. They

are also assumed to be constant over the entire season:

µatt ∼ N(0, 0.0001)

µdef ∼ N(0, 0.0001)

τatt ∼ Gamma(0.1, 0.1)

τdef ∼ Gamma(0.1, 0.1)

The entire hierarchical structure can be represented using the following DAG 8.

8Directed acyclic graph
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µatt τatt µdef τdef

atth[g] defa[g] home

θg,1

yg,1

atta[g] defh[g]

θg,2

yg,2

The target posterior distribution of the model can be written using the usual bayesian

updating rule:

π
(
θ
∣∣y) ∝ π (θ)L (θ) = π (home)

20∏
w=1

π (attw) π (defw)
380∏
g=1

f
(
yg,1|θg,1

)
· f
(
yg,2|θg,2

)
=

= N(0, 0.0001)
20∏

w=1

N(µatt, τatt)N(µdef , τdef )
380∏
g=1

Poisson
(
θg,1
)
Poisson

(
θg,2
)

The previous posterior distribution is not analytically tractable and so a Monte Carlo

Markov Chain method is used in order to generate samples from it. Due to the complex

structure of the posterior, a Gibbs Sampler is adopted.

Given the hierarchical structure of the model I used, two objectives can be defined.

The first is to estimate the main effects influencing the scoring rates. I initialised

the parameters of the model involved in the Gibbs sampler with two different vectors

of values. In the case of the offensive and defensive parameters, in one case they

were randomly generated with a Gaussian distribution centered on 0 and with a small

variance for each position. The other initial values were obtained by subtracting the

league average from the offensive and defensive propensities (Figure 3.1). As mentioned

above, these are not the observed values that represent attacking and defensive ability,

as these effects cannot be observed.
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Figure 3.1: General differential Attacking ability w.r.t the average effect in the league (left). General differential

Defensive ability w.r.t the average effect in the league (right)

3.2 Bayesian Hierarchical model with covariates

Taking into consideration the theories and the beliefs developed during the descriptive

part, the previous model can be modified as follows. First of all, it is possible to

add covariates because it has been proven that there are other factors which have an

influence on the number of goals scored by a team. For the time being, only those

that are useful to describe and represent the shape of a team will be considered.

Moreover, the home effect will be not considered to be the same for all the teams.

As has been demonstrated above, the number of goals scored at home turns out to be

higher for teams that can accommodate a larger number of people inside their stadium.

So, the home effect will be partitioned into two clusters:

• teams that ”own” stadiums with a large capacity, say cluster A;

• teams that ”own” stadiums with a medium-small capacity, say cluster B.

More formally, the home effect has a different influence on the number of goals scored

depending on which cluster the home team is in. The introduction of the indicator

function attendancew is required. In particular:

attendancew =

1 w ∈ A

0 w ∈ B

Let’s try to formalize the main differences in the likelihood w.r.t the previous model:

22



1. log(θg,1) = b0attendanceh[g] + b1(1− attendanceh[g]) + β1RSCh[g] + β2RDCa[g] +

β3QOh[g] + β4∆ELOh[g] + atth[g] + defa[g];

2. log(θg,2) = β1RSCa[g] + β2RDCh[g] + β3QOa[g] + β4∆ELOa[g] + atta[g] + defh[g];

3. as shown by the two equations above, I have opted to use the difference between

the Elo points of both competitors as the independent variable;

4. the form of the likelihood is the same as before, even if the two scoring propensities

depend on more parameters rather than before.

Regarding the new parameters:

• the random effects b0 and b1 are independent and they follow a Gaussian distribution

centered in 0 and with the same variance σ2
0. In turn, σ2

0 follows a Gamma

distribution;

• β = (β1, β2, β3, β4)
T represent a vector of fixed effects and they are assumed to

be independent between each other. Furthermore, they are assumed to be the

same among the two Poisson regressions. Each β follows a Gaussian distribution

centered in 0 and with variance equal to 0.0001.

The prior distribution for all the parameters can now be written as:

π
(
b0, b1, att, def, β

)
i
=

2∏
d=1

π (bd)
4∏

p=1

π(βp)
20∏

w=1

π (attw) π (defw)

The posterior target distribution is:

π
(
θ
∣∣y) ∝ π (θ)L (θ) =

2∏
d=1

π (bd)
4∏

p=0

π(βp)
20∏

w=1

π (attw) π (defw)
380∏
g=1

f
(
yg,1|θg,1

)
· f
(
yg,2|θg,2

)
Also in this case, due to the complex structure of the model, a Gibbs Sampler is

required to generate samples from the target posterior density.

As before, two chains have been initialized. For the attacking and defensive

parameter i have chosen the same initialization as the previous model, while all the

other parameter have been randomly initialized due to the lack of prior information.
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3.3 Zero-Inflated Bayesian Hierarchical model

In the paper [11], the authors propose to introduce a factor in order to take into

account the under prediction of zeros. As pointed out in the descriptive part, the

number of goals scored by home and away teams are influenced by different inflation

factors. A natural extension of the previous model is possible 9:

• yg,1, yg,2|θg,1, θg,2, p1, p2
C.I
= yg,1|θg,1, p1 · yg,2|θg,2, p2;

• yg,1|θg,1, p1 ∼ ZIP(θg,1, p1) and yg,2|θg,2, p2 ∼ ZIP(θg,2, p2);

• p1 and p2 denote the inflation factors for home and away goals scored, respectively.

Referring to the definition of the Zero-inflated Poisson distribution 1, p1 (alternatively

p2) can be interpreted as the mixing proportion of a mixture distribution involving

a random variable degenerate at 0 and a Poisson distribution. These effects are

assumed to remain constant throughout the season and are not impacted by any

covariates;

• introduce two indicator functions δg,1 and δg,2, where δg,1 = 1 indicated the

zero-inflated component for the home goals and δg,2 = 1 indicated the zero-inflated

component for the away goals. In particular, δg,1|p1 ∼ Bern(p1) and δg,2|p2 ∼
Bern(p2). Recall that:

f(yg,1 = 0|p1, θg,1, δg,1 = 1) = 1 f(yg,1 = k|p1, θg,1, δg,1 = 0) = Pois(k|θg,1)
f(yg,2 = 0|p2, θg,2, δg,2 = 1) = 1 f(yg,2 = k|p2, θg,2, δg,2 = 0) = Pois(k|θg,2)

• yg,1, yg,2, δg,1, δg,2|θg,1, θg,2, p1, p2
C.I
= yg,1|θg,1, p1, δg,1 · δg,1|p1 ·yg,2|θg,2, p2, δg,2 · δg,2|p2

10.

Under the new model specification, the likelihood can be written as:

L (θ, p1, p2) = f
(
y1,1, δ1,1, y1,2, δ1,2, . . . , y380,1, δ380,1, y380,2, δ380,2|θ1,1, θ1,2, . . . , θ380,1, θ380,2, p1, p2

)
c.i.i.d
=

380∏
g=1

f(yg,1|δg,1, θg,1, p1)f(δg,1|p1)f(yg,2|δg,2, θg,2, p2)f(δg,2|p2)

∝
380∏
g=1

(
p1I{yg,1 = 0}

)δg,1 ((1− p1)Pois(yg,1|θg,1)
)1−δg,1 (p2I{yg,2 = 0}

)δg,2
(
(1− p2)Pois(yg,2|θg,2)

)1−δg,2

Following the same reasoning as before, it remains only to specify prior distributions

for the new parameters. In particular, p1 ∼ Beta(a0, b0) and p2 ∼ Beta(a1, b1). A

common choice is to allow a0 = b0 = a1 = b1 = 1 in order to use non-informative priors

9Note that in the following bullet list, i will just report the differences w.r.t the previous case.
10This technique is known as Data Augmentation.
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11. The new hierarchical structure can be represented as follows:

µatt τatt µdef τdef

atth[g] defa[g] home p1

δg,1θg,1

yg,1

atta[g] defh[g] p2

θg,2 δg,2

yg,2

The target posterior distribution can be written as:

π
(
θ, p1, p2, δ

∣∣y) ∝ π (θ, p1, p2)L (θ, p1, p2) = π (home) π(p1)π(p2)
20∏

w=1

π (attw) π (defw)L (θ, p1, p2)

= N(0, 0.00001)Beta(a0, b0)Beta(a1, b1)
20∏

w=1

N(µatt, τatt)N(µdef , τdef )L (θ, p1, p2)

As before, the complex structure of the model does not allow the analytical computation

of the target posterior and a Gibbs Sampler is adopted again. From both an interpretive

and statistical point of view, it turns out to be interesting to formalize the full

conditional distribution for the parameter δg,1 (δg,2).

π(δg,1|θ, y, p1, p2, δg,2) ∝
380∏
g=1

(
p1I{yg,1 = 0}

)δg,1 ((1− p1)e
−θg,1

θ
yg,1
g,1

yg,1!

)1−δg,1

∝
(
p1I{yg,1 = 0}

)δg,1 ((1− p1)e
−θg,1

θ
yg,1
g,1

yg,1!

)1−δg,1

= q
δg,1
1

(
p1I{yg,1 = 0}

q1

)δg,1
(
(1− p1)

q1
e−θg,1

θ
yg,1
g,1

yg,1!

)1−δg,1

q
1−δg,1
1

∝
(
p1I{yg,1 = 0}

q1

)δg,1
(
(1− p1)

q1
e−θg,1

θ
yg,1
g,1

yg,1!

)1−δg,1

Where q1 = p1I{yg,1 = 0}+(1−p1)Pois(yg,1|θg,1). In particular, each argument of the

distribution is multiplied and divided by q1 in order to obtain a probability measure.

11Remember that a Beta(1, 1) is a Uniform[0, 1]
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Moreover, δg,1|p1, θg,1, yg,1 ∼ Bern(p̃1), where:

p̃1 = P
(
δg,1 = 1|θg,1, p1, yg,1

)
=

p1I{yg,1 = 0}
p1I{yg,1 = 0}+ (1− p1)Pois(yg,1|θg,1)

In my opinion, the way the parameter p1 updates from one iteration to another is

emblematic since it weights the information coming from the beta with the information

coming from the mixture distribution. It is possible to make the same considerations

for the random variable δg,2.

As with all other scenarios, two chains have been run. The offensive and defensive

coefficients have been set up in the same manner as illustrated in Figure 3.1, while

the two inflation parameters, along with the home random effect, have been initialized

randomly.

3.4 Modified Zero-Inflated Bayesian Hierarchical model

Taking into account [10] and considering the results showed in Section 4, it was not

possible to accurately predict the probability of the event {team scores 0 goals} using

the previous models. One potential explanation is that they only consider a single

parameter shared by all teams, which represents their tendency to score 0 goals at home

or away. Note that this does not constitute a formal interpretation of the inflation

parameter as it functions as a mixing weight within a mixture distribution. As shown in

Figure 2.2, the teams had varying percentages of goals scored equal to zero throughout

the season. Therefore, relying on a single parameter is too strong as an assumption and

so it will be relaxed. In greater detail, the magnitude of this effect will be measured

using a parameter for each team, one for when they play at home and one for when

they play away. It is possible to extend the previous model as follows:

• the vector p
1
=
(
p1,1, . . . , p1,20

)
represents the mixing proportion for the ZIP

distribution used to model the home goals, while the vector p
2
=
(
p2,1, . . . , p2,20

)
refers to ZIP distribution for the away goals. Again they are assumed to be

constant throughout the season;

• yg,1, yg,2|θg,1, θg,2, p1[g] , p2[g]
C.I
= yg,1|θg,1, p1[g] · yg,2|θg,2, p2[g] . Note that by utilizing

1[g] and 2[g], it is feasible to distinctly determine a single coefficient ∀g = 1, . . . 20;

• yg,1|θg,1, p1[g] ∼ ZIP(θg,1, p1[g]) and yg,2|θg,2, p2[g] ∼ ZIP(θg,2, p2[g]);

• the parameters retain their previous interpretation, and I additionally require

the inclusion of the indicator functions δg,1 and δg,2.
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Given the new specifications, the likelihood of the model has a similar form than

before:

L
(
θ, p

1
, p

2

)
= f

(
y1,1, δ1,1, y1,2, δ1,2, . . . , y380,1, δ380,1, y380,2, δ380,2|θ1,1, θ1,2, . . . , θ380,1, θ380,2, p1, p2

)
c.i.i.d
=

380∏
g=1

f(yg,1|δg,1, θg,1, p1[g])f(δg,1|p1[g])f(yg,2|δg,2, θg,2, p2[g])f(δg,2|p2[g])

∝
380∏
g=1

(
p1[g]I{yg,1 = 0}

)δg,1 (
(1− p1[g])Pois(yg,1|θg,1)

)1−δg,1 (
p2[g]I{yg,2 = 0}

)δg,2
(
(1− p2[g])Pois(yg,2|θg,2)

)1−δg,2

Appropriate prior distributions are required for the latest inflation factors. Adopting

the same approach as the random effects specification, it is conceivable that the

inflation factors for home and away teams are linked, originating from a shared population

distribution. In order to achieve this outcome, it is possible to assume that the

parameters are independent within each other as well as with respect to the other

parameters of the model. The prior distributions for the parameters can be expressed

as: 
p1,w ∼ N(µp1 , τp1)T (0, 1) w = 1, . . . , 20

p2,w ∼ N(µp2 , τp2)T (0, 1) w = 1, . . . , 20

π(p
1
, p

2
)
=

i
20∏

w=1

N(µp1 , τp1)T (0, 1)N(µp2 , τp2)T (0, 1)

Two remarks can be made:

• a truncated normal distribution within the range of [0, 1] is selected because the

inflation factors represent proportions, and their value is in logit form;

• the population parameters µp1 (µp2) and τp1 (τp2) correspond to the population

mean and variance of the inflation factors of home (away) goals scored. It

is crucial to choose a probability distribution that fits these hyperparameters

appropriately. The key principle to adhere to is to center the mean parameter

on zero, as the variance parameter has a significant impact on the differences in

coefficient values. Namely, if the common variance approaches zero, it is highly

probable that the parameters will be concentrated around a single value (which

is not significantly different from having only one parameter). However, a larger

common variance permits the coefficients to take on distinct values. Without any

loss of generality, it can be argued the common variance is acting as a shrinkage

hyperprior.

Taking into account the ideas of [8], two weakly informative priors distribution

will be used for the variance hyperparameter.
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

µp1 ∼ Beta(1, 1)

τp1 ∼ Gamma(0.001, 0.001)

µp2 ∼ Beta(1, 1)

τp2 ∼ Gamma(0.001, 0.001)



µp1 ∼ Beta(1, 1)

τp1 ∼ Cauchy+(0, c0)

µp2 ∼ Beta(1, 1)

τp2 ∼ Cauchy+(0, c1)

Note that the Half-Cauchy distribution, which is a truncated Cauchy distribution, only

has non-zero probability density for values greater than or equal to 0. It is noteworthy

that this is a heavy-tailed distribution. Moreover, it is imperative to carefully select

the hyperparameters c0 and c1, as the prior distribution will become a uniform over

the domain if c0 → ∞ (and likewise for c1). The fundamental concept behind selecting

priors that assign a substantial probability mass to 0 is that coefficients will be distinct

from zero only if the data permits.

The prior distribution for all the parameters involved in the model can be expressed

as follows:

π(θ, p
1
, p

2
) =π(home)

20∏
w=1

π(p1,w)pi(p2,w)π(attw)π(defw)

Taking into account the new model specification, the new hierarchical structure can

be expressed in the following way.

µatt τatt µp1 τp1 µdef τdef µp2 τp2

atth[g] defa[g] home p1,h[g]

δg,1θg,1

yg,1

atta[g] defh[g] p2,a[g]

θg,2 δg,2

yg,2

The posterior distribution of the target model can be expressed via the commonplace

Bayesian updating rule. However, it is not analytically tractable, necessitating the
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implementation of the Gibbs sampler.

π
(
θ, p1, p2

∣∣y) ∝ π (θ)L (θ) = π (home)
20∏

w=1

π(p1,w)pi(p2,w)π (attw) π (defw)

380∏
g=1

f
(
yg,1|θg,1, p1[g]

)
· f
(
yg,2|θg,2, p2[g]

)
=

= N(0, 0.0001)
20∏

w=1

N(µp1 , τp1)T (0, 1)N(µp2 , τp2)T (0, 1)N(µatt, τatt)N(µdef , τdef )

380∏
g=1

ZIP
(
θg,1, p1[g]

)
ZIP

(
θg,2, p2[g]

)
To provide a comprehensive analysis, I have also considered the extreme case where

the inflation factors do not originate from the same population. In this scenario, it is

assumed that each parameter is independent and originates from a different population.

To maintain consistency with the nature of the parameters, a non-informative distribution,

specifically a Beta(1,1), is used. The model’s structure remains largely unchanged, but

hyperpriors linked to the inflation parameters for home and away scored goals have

been removed.

Following the idea and the methodology of the previous experiments, two chains

have been run. The offensive and defensive random effects in the model were initialized

similarly to all the other models (refer to Figure 3.1), while the other parameters were

randomly initialized. As a note, I selected values of c0 and c1 both equal to 30 to

establish a weakly informative distribution. [8] suggests using a higher value for the

scale parameter of the Half Cauchy distribution, in order to be as non-informative

as possible and to allow the data to have a greater influence on the magnitude of

the parameters. Figure 3.2 shows that despite using two different hyperpriors for the

common variance, the estimates of the inflation factors and their posterior marginal

distribution are quite similar. However, upon closer inspection of their similarity and

conducting a Kolmogorov-Smirnoff test on their posterior cumulative distribution,

it is consistently feasible to refute the null hypothesis that the two samples are drawn

from the same distribution. Moreover, going forward, I will present only the outcome

for the model that applies a Gamma hyperprior as it shows a lower DIC. Furthermore,

it is evident that the coefficients have similar and minute values, leading to the

conclusion that the current situation is not noticeably different from the earlier model

with only two coefficients.
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Figure 3.2: Marginal posterior densities for p1, w using Gamma hyperprior (top left) and Half Cauchy hyperprior

(top right). Marginal posterior densities for p2,w using Gamma hyperprior (bottom left) and Half Cauchy hyperprior

(bottom right).

3.5 Extra: Explanatory Model

Following the ideas contained in [7], the first step I would like to take is to assess which

are the most important variables capable of influencing the outcome of the match. The

structure of the following subsection will be as follows, first I will introduce the chosen

model with a suitable notation and then a comment on the results will be shown. In

particular, the results will be presented here and not in the following section because

the objectives are different.
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Starting from the description of the model, the notation is the same as the others.

The main difference with [1] is that no random effects are used because, as can be

seen from section 4, their effect is taken over by the covariates. Furthermore, an

intercept has been included in the equations of the scoring intensities related to the

number of goals scored by the away team. It is important to note that there is a direct

connection between this new parameterization and the conventional one. In fact, the

home advantage can be seen as the disparity between the two intercepts of the model.

The log-linear equations can be written as follows:log(θg,1) = xT
g,hβh

log(θg,2) = xT
g,aβ̃a

where:

• xg,h = [1 xh
g,2 . . . x

h
g,12] and xg,a = [1, xa

g,2 . . . x
a
g,12] represent the covariates vector

associated to the home and away team for the g-th game;

• β
h
= [uh, β1, . . . , β11] and β̃

a
= [ua, β̃1, . . . , β̃10] are the set of coefficients associated

to the home and away variables. The regression coefficients are assumed to be

different because the covariates can have a different impact on the number of

scored goals if the match is played at home or away.

The likelihood of the model can be written in the following way:

L (θ) = f
(
y1,1, y1,2, . . . , y380,1, y380,2|θ1,1, θ1,2, . . . , θ380,1, θ380,2

)
c.i
= f

(
y1,1, . . . , y380,1|θ1,1, . . . , θ380,1

)
· f
(
y1,2, . . . , y380,2|θ1,2, . . . , θ380,2

)
i.d
=

380∏
g=1

f
(
yg,1|θg,1

)
· f
(
yg,2|θg,2

)
=

380∏
g=1

Poisson(exp(xT
g,hβh

)) · Poisson(exp(xT
g,aβa

))

In the context of regression analysis, the selection of appropriate prior distributions

for regression coefficients is a crucial aspect, and one notable choice is the Zellner

G-prior as introduced by [23]. This particular prior offers a distinctive approach by

circumventing the need to explicitly specify the variance-covariance matrix, allowing

it to adapt to the data’s characteristics. The parameter denoted as g in the G-prior

holds significance as it is inversely proportional to the information incorporated into

the prior relative to the sample. In the conventional framework, the selection of g is

guided by the principle of equating it to the number of observations in the dataset.

This choice ensures that the prior is accorded a weight comparable to that of an

individual observation.

It is noteworthy that, in a theoretical context, the Zellner G-prior also allows for the

incorporation of weak assumptions regarding the location of the parameters. However,
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for the present discussion, such assumptions are not explicitly considered:

β
h
∼ MVN 12

(
0, gσ2

(
XT

1 X1

)−1
)

β̃
a
∼ MVN 11

(
0, gσ̃2

(
XT

2 X2

)−1
)

σ2 ∼ IG(a, b) σ̃2 ∼ IG(a, b)

π
(
β
h
, β̃

a
, σ2, σ̃2

)
= π

(
β
h
|σ2
)
π
(
β̃
a
|σ̃2
)
π(σ2)π(σ̃2)

Following the usual Bayesian updating rule, it is possible to write the posterior

distribution in the following way:

π
(
θ
∣∣y) ∝ π (θ)L (θ) = π

(
β
h
|σ2
)
π
(
β̃
a
|σ̃2
)
π(σ2)π(σ̃2)

380∏
g=1

f
(
yg,1|θg,1

)
· f
(
yg,2|θg,2

)
=

= MVN 12

(
0, gσ2

(
XT

1 X1

)−1
)
MVN 11

(
0, gσ̃2

(
XT

2 X2

)−1
)
IG(a, b)IG(a, b)

380∏
g=1

Poisson(exp(xT
g,hβh

)) · Poisson(exp(xT
g,aβa

))

In addressing the intricate nature of the posterior distribution, a Gibbs sampler was

employed as the computational methodology. Building upon the principles elucidated

in Section 3, a dual-chain configuration was adopted, and the model parameters were

initialized randomly. The computational process encompassed a total of 105 iterations,

with half of these iterations dedicated to the burn-in phase. It is noteworthy that

the independent variables within the model underwent a standardization process.

This standardization not only enhances interpretability but also serves to facilitate

convergence. Specifically, the variables were standardized to bring them to a comparable

scale, thereby contributing to a more efficient convergence of the Gibbs sampler.

Based on the values derived from the simulated marginal posterior distributions,

the estimated median values and 95% Highest Posterior Density (HPD) intervals are

presented in Table 3.1. Notably, the parameter denoted as home, representing the

disparity between uh and ua, exhibits a positive influence on the number of goals

scored, characterized by an average estimate of 0.23. The associated 95% HPD interval

is delineated as [0.09, 0.36], providing a range within which the true parameter value

is likely to reside. It is imperative to highlight that it is the lower value attained by

the home effect until now, even though it is positive.

For a nuanced understanding of the factors influencing the number of goals scored,

both for the home and away teams, a ’rule of thumb’ is applied. Specifically, if

the 95% HPD interval includes the value 0, any assertion regarding the existence

of a discernible effect becomes untenable. From this perspective, it is arguable that

solely variables capturing the overall shape and the dangerousness of a team has a
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substantive influence on goal-scoring outcomes. Conversely, variables associated with

team discipline appear to exert an insignificant impact on the goal-scoring process.

Moreover, the aforementioned inference leads to the conjecture that time may emerge

as a pivotal factor in this context, given the temporal dependence of team dynamics.

The inference alludes to the notion that the overall team shape, being a time-dependent

variable, plays a crucial role in determining goal-scoring patterns.

β
h

Mean 2.5% 97.5%

uh 0.32 0.225 0.404

RSC 0.17 0.063 0.271

RDC 0.25 0.061 0.450

QO -0.39 -0.602 -0.172

DeltaElo 0.08 -0.079 0.227

Corners -0.14 -0.253 -0.040

Yellow Cards -0.05 -0.147 0.035

Red Cards -0.01 -0.109 0.071

Shots 0.33 0.231 0.432

Fouls 0.07 -0.019 0.153

Possession -0.07 -0.195 0.045

Attendance -0.03 -0.143 0.072

β
a

Mean 2.5% 97.5%

ua 0.09 0.049 0.185

RSC 0.22 0.061 0.338

RDC 0.13 -0.069 0.377

QO -0.42 -0.652 -0.193

DeltaElo -0.08 -0.223 0.061

Corners -0.15 -0.252 -0.054

Yellow Cards 0.03 -0.057 0.130

Red Cards -0.02 -0.119 0.077

Shots 0.29 0.194 0.395

Fouls 0.02 -0.071 0.121

Possession 0.004 -0.123 0.135

Table 3.1: Average value attained by the regression coefficient times the standard deviation of the associated

independent variable.

In a more formal approach, the selection of the best subset of variables for a

model involves addressing a model selection problem, particularly within the Bayesian

framework. The goal is to estimate the marginal posterior probability that a variable

should be included in the model. Specifically, in the context of your problem, this

involves exploring 2p1+p2 different models, where p1 and p2 represent the number of

covariates used to model home and away scored goals, respectively. It’s important to

note that the two intercepts are always considered part of the model.

One common method, and arguably the simplest [12], is to assign an indicator

function for each variable, say ij ∀j = 1, . . . , p1 + p2, where ij = 1 implies that the

j-th covariate is included in the model. Let Ih,g and Ia,g be two diagonals matrices,

where the diagonals reflect the values of the corresponding indicator functions, and

the first element is always one. The log-linear equations can now be generalized in the

following way:

log(θg,1) = xT
g,h

(
Ihβh

)
log(θg,2) = xT

g,a

(
Iaβ̃a

)
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The most important assumption of the above method is that the fixed effects

and the indicators are independent. More complex techniques, such as the Gibbs

variables selection and the Stochastic search variable selection, remove this

assumption. So, the prior of the new model can be specified as:



β
h
∼ MVN 12

(
0, gσ2

(
XT

1 X1

)−1
)

β̃
a
∼ MVN 11

(
0, gσ̃2

(
XT

2 X2

)−1
)

σ2 ∼ IG(a, b) σ̃2 ∼ IG(a, b)

π (Ih) =
11∏
j=1

Bern(pj) π (Ia) =
10∏
j=1

Bern(p̃j)

π
(
β
h
, β̃

a
, σ2, σ̃2, Ih, Ia

)
= π

(
β
h
|σ2
)
π
(
β̃
a
|σ̃2
)
π(σ2)π(σ̃2)π((Ih) π((Ia)

In the aforementioned method, the interest is devoted to the marginal posterior

distribution associated to the indicators functions. More into detail, the focus is on the

posterior inclusion probabilities of the variables. In fact, the number of runs of 0s and

1s in the chains is recorded for each ij because it s a measure of mixing, where more

runs indicate better mixing. An additional noteworthy consideration is the selection

of hyperprior values for the inclusion probabilities associated to the indicators, and

the existing literature reflects a degree of division on this matter. Optimal hyperprior

values play a crucial role, influencing the sparsity or complexity of the resulting models.

If set too low, sparser models may be favored, whereas excessively high values could

lead to overly complex models. Notably, assigning a value of 0.5 is discouraged as it

may, as demonstrated by [14], result in selecting approximately half of the covariates

involved in the model. Thus, the determination of an appropriate value demands

careful investigation. In particular, after some trials, I have decided to fix the value

of the prior inclusion probabilities equal to 0.3 due to the fact that it ensures a good

mixing and a relative sparse solution.

Upon scrutinizing the analysis depicted in Figure 3.3, the estimated posterior

inclusion probabilities for various variables associated with home and away scored goals

come to the forefront. Evidently, it is discernible that the crucial variables influencing

both home and away scored goals remain consistent, with the notable exception of

the recent defensive condition, which appears to be excluded from the consideration

in the context of away scored goals. This observation implies a distinct influence of

this particular variable in the home scoring dynamics. The analysis strongly suggests

that the selected variables are intricately linked to the overall configuration of a team,

with a noteworthy observation being the relative insignificance of disciplinary factors.

This insight underscores the notion that team dynamics and structure play a more

prominent role in influencing scoring outcomes compared to disciplinary considerations.
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Figure 3.3: Posterior inclusion probabilities related to the variables used to model home scored goals (left) and away

scored goals (right).

Once the important variables have been selected, a new model is constructed based

on the configuration derived from the previous analysis. Specifically, the modeling of

home scored goals will consider only five variables, while for away scored goals, four

variables will be considered, each accompanied by the intercept term. By focusing

on a reduced set of influential factors, the model is poised to offer insights into the

essential elements governing the scoring dynamics in both home and away contexts. In

comparing the posterior estimation of the regression coefficients (Figure 3.2), a notable

concordance is discernible in relation to those obtained from the previous model.

However, an anomalous observation pertains to the variable ”corner”, exhibiting a

tendency towards negative values, contrary to intuitive expectations.

Initially, a hypothesis was entertained suggesting a potential latent effect influencing

the relationship between the number of shots and the count of corners. Subsequently,

I endeavored to reanalyze the data, excluding shots from the model but the sign

of the coefficient for the variable ”corner” remained negative, contradicting intuitive

assumptions. Furthermore, upon the removal of shots from consideration, the number

of corners no longer exhibited statistical significance based on posterior inclusion

probability. It would be of interest to deeply analyse this strange behaviour to

understand more.

In conclusion, It is noteworthy that the DIC for the new model registers at 2089.2,

representing the lowest value encountered thus far. Notably, the posterior distributions

associated with σ2 and σ̃2 exhibit comparability, suggesting stability in the variance
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components. This observation underscores the potential efficacy of the new model in

capturing the underlying data structure and warrants a comprehensive examination

of the ”corner” variable’s impact.

β
h

Mean 2.5% 97.5%

uh 0.328 0.236 0.416

RSC 0.172 0.086 0.258

RDC 0.255 0.060 0.443

QO -0.408 -0.606 -0.200

Corners -0.163 -0.257 -0.066

Shots 0.318 0.223 0.411

β
a

Mean 2.5% 97.5%

ua 0.100 0.001 0.200

RSC 0.213 0.133 0.298

QO -0.252 -0.349 -0.150

Corners -0.173 -0.264 -0.081

Shots 0.299 0.199 0.399

Table 3.2: Average value attained by the regression coefficient times the standard deviation of the associated

independent variable.
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4 Static Models: results and research questions

The following section compares the results of previous models and attempts to answer

some interesting questions. The section is organized as follows: for each research topic,

the performance of different models will be compared (when possible) to understand

which one is better suited to answer it. Generally, each question could be classified

under two main categories: ’Estimation’ or ’Prediction’. The estimation folder displays

an examination related to the posterior distribution of the parameters and the model’s

deviance. The prediction subsection displays questions related to the posterior predictive

distributions, including predictive checks. These two folders are useful for understanding

the behaviour of different models in various aspects, which can help in defining a

direction for building a new model.

4.1 Estimation

It is important to remark one point before moving on. All the parameters that are

analyzed below have an influence on the propensity of a team to score (if the team

plays home θg,1, otherwise θg,2). Without any loss of generality, I can claim that

the prior distribution for the induced parameter is non-informative at all, while the

posterior distribution tends to assume a shorter range of values, say between zero and

six. Due to the high number of parameters (760), it is not possible to conduct a

thorough analysis or comparison of the different models for the induced parameters,

but it is possible to observe one prior to posterior update. The log-scale representation

was chosen due to the nature of the values assumed by the prior distribution.

Figure 4.1: Prior to posterior update of the home theta parameter for 10th game of the season in log scale.
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Figure 4.1 illustrates the prior-to-posterior update of θg,1 and θg,2 for the tenth

game of the season. This demonstrates the point I was trying to make earlier. In

conclusion, the narrow range of values in the prior distribution is unusual. However,

it is unlikely to affect the rest of the analysis and it worths to mention it.

4.1.1 Which is the impact of the offensive and defensive parameter?

Prior to estimating the random effects, it is crucial to comprehend the behaviour of

the linked hyperprior parameters, particularly the mean and variance. It is assumed

that the offensive and defensive random effects for all models originate from the same

hyperprior distribution with the same structure. Regarding the mean, I have tried to

different approaches, i.e. fixing it directly to zero or using a Gaussian distribution.

Without any loss of generality, it can be argued that the estimated random effects are

the same. Regarding the hyperprior variance of the offensive and defensive random

effects, it can be proved that it tends to take values between zero and one in the

posterior simulation.

After drawing attention to the higher level of the structure, let’s now move on to

analysing the offensive and defensive parameters. One important point to note is that

the prior distribution of both offensive and defensive parameters is centered around

zero with a high variance in order to ensure non-informativeness:

• taking into account the hierarchical model without covariates, analysing the net

offensive and defensive effects (Figure 4.2), Manchester City (the league

winner) has the highest offensive propensity (posterior mean of 0.56), followed

by Liverpool (posterior mean of 0.49) and Arsenal (posterior mean of 0.32).

The top four clubs (Manchester City, Liverpool, Chelsea andTotthenam)

have the lowest propensity to concede goals, while Fulham, Huddersfield

Town and Bournemouth have the highest. Note that the first two teams

were actually relegated at the end of the season;

• concerning the offensive and defensive random effects, when covariates are considered,

much of their effectiveness has been lost, reducing to very small values (Figure

4.3). In particular, the highest offensive propensity is owned by Manchester

City and it is equal to 0.027, which is quite different from all the other results.

The worst defending teams are Huddersfield Town, Fulham and Cardiff

City, which present respectively an average effect of 0.043, 0.032 and 0.016.

However, these values are not highly reliable since, by studying the confidence

intervals and the traceplot, it can be seen that 0 is always a plausible value.

Heuristically, the explanation is that the previously possessed effect was somehow

incorporate into the other variables involved in the model;
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Figure 4.2: 95% high posterior density intervals for the attacking effect (left). 95% high posterior density intervals

for the defensive effect (right). Dots represent the average effect.

Figure 4.3: 95% High posterior density intervals for the attacking effect (left). 95% High posterior density intervals

for the defensive effect (right). Dots represent the average effect.

• for the remaining models, the offensive and defensive parameters display almost

identical average values, alongside 95% confidence intervals, compared to those

observed in the first model (see Figure 4.2). Due to the numerous similarities

between those models, this outcome is intuitive. Actually, Manchester City

and Liverpool maintain the most potent attacking and defensive capabilities,

whereasHuddersfield Town, Cardiff City, and Fulham continue to show

the weakest performances.
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In conclusion, the offensive and defensive parameters represent the team’s actual

strength. The use of covariates can capture the pattern described earlier. This means

that observable variables can provide the same contribution, albeit with a different

interpretation, even if random effects can be used.

4.1.2 Does a ”home” effect really exist? Is it linked to the attendance?

Determining the existence of a ’home’ effect is a crucial question, as evidenced by

several papers [1] [11] [5]. Additionally, I investigated whether this effect is correlated

with stadium size. Upon closer examination, it became apparent that every model

tested revealed a positive effect when teams played in their home stadium. To proceed

straightforwardly, let us first visualise the prior distribution for the home parameter.

From Figure 4.4, it is possible to understand which are the values attained by the prior

distributions associated to the home effect.

Figure 4.4: Prior distribution for the home parameter (left) and for the random effects associated to the attendance

in the model with covariates (right)

In particular:

• considering the hierarchical model, the home effect attains an average value of

0.36 and the 95% highest posterior density interval is [0.28, 0.45];

• in the model with covariates, the two parameters which represent the home effect

are still positive. In particular, the one related to teams with a smaller stadium is

on average 0.186 (95% HPD interval [0.05, 0.32]), while the one related to teams

with a bigger stadium is 0.23 (95% HPD interval [0.08, 0.40]). After observing

these values, two considerations are possible. The first concerns the fact that

indeed there is a different, though not large, effect associated with the type of

possessed stadium. Unfortunately, the value for the home effect is smaller than
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in the first model. However, this is due to other circumstances, such as the

inclusion of covariates;

• when two inflation factors are considered, the home impact has average value of

0.37 and a 95% HPD interval of [0.28, 0.46];

• once the number of inflation factors is increased, it is evident that playing at

home still has a positive impact with an average of 0.41 (95% HPD intervals

[0.32, 0.49]);

• in the last model, it has an average value of 0.45 with 95% HPD intervals of

[0.36, 0.55], which is the highest value observed in the model to date.

Figure 4.5 shows the posterior distribution of the parameters mentioned above. The

variance of the posterior is lower than the prior, as expected, and they are no longer

centered at zero. In conclusion, it can be claimed that there is a home advantage

effect that benefits the team playing in its own stadium. Additionally, the size of the

stadium, which is linked to attendance, appears to have an impact on this effect.

Figure 4.5: Posterior distribution for the home parameter (left) and for the random effects associated to the attendance

in the model with covariates (right).

4.1.3 Are covariates really useful to understand the outcome of a football

match?

To answer the question, only one model will be considered as it is the only one that

directly uses covariates that affect the number of scored goals. As all parameters have

the same prior distribution, only one simulation will be displayed. This distribution

is also associated with the home effect, and a simulation can be seen in Figure 4.4.

Regarding the fixed effects of the model:
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• the parameter associated to the Recent scoring condition of the team has a

positive average value of 0.11 (95% HDI [0.01, 0.20]). This is in agreement with

what was said in the descriptive part, i.e. the number of goals scored in the past

games by a team has a positive influence on the number of goals scored in the

next game;

• going on, the parameter associated to the Recent defensive condition of the

opponent has a positive average value of 0.42 (95% HPD interval [0.31, 0.53]).

Again, this makes a lot of sense with what has been said previously. The more

the opposing team has conceded goals in previous games, the greater the team’s

propensity to score;

• the parameter associated to the Quality of the opponent has a negative average

value of −0.44 (95% HPD interval [−0.53,−0.35]). The greater the number

of points accumulated by the opponents in the previous games, the lower the

offensive propensity of the team is;

Figure 4.6: Posterior distribution associated to the coefficients of the three analyzed covariates

• the parameter linked to the difference between the Elo rankings of the two teams

has a small positive average worth of 0.00035. It’s estimated value does not

represent at all what is shown in Figure 2.11, In reality, it can confidently be

said that it is almost zero. This assertion is supported by Figure 4.7’s traceplot,

which indicates that the simulated values cross frequently zero.

42



Figure 4.7: Traceplot and running mean for the parameter β4. The dotted line comes from the equation y = 0

In Figure 4.6 the posterior distributions associated to the first three coefficients are

placed. I have decided not to include the coefficients linked to the difference of Elo

rankings because it is on a completely different scale and furthermore it can be regarded

as a sort of degenerate posterior distribution in 0.

In conclusion, it can be argued that covariates are useful in understanding the outcome

of a football match, despite their limitations. The variables associated with the first

three coefficients have a zero value for the first 50 games due to being moving averages.

This may introduce bias in the analysis that cannot be compensated for by any other

variable, as they are not currently being considered. Improvements can be made in

this area.

4.1.4 Inflation factors: a comparison.

Only [11] has considered the use of a zero-inflated Poisson (ZIP) distribution to model

the number of scored goals. As explained in the theoretical section, three models

directly use the inflation factors:

• considering the model with two inflation factors, in Figure 4.8 it is possible to

visualize the prior-to-posterior update of the involved parameters. Going into

more detail, the mean value of p1 is 0.016, with a 95% HPD interval of [0,0.04],

while the mean value of p2 is 0.012, with a 95% HPD interval of [0, 0.03]. Though

the effects are marginal, they appear to impact the number of goals scored, albeit

it cannot be ascertained if they are distinguishable from zero;
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Figure 4.8: Prior to posterior update of the inflation factors linked to the home (left) and away (right) scored goals.

• concerning the model which considers the inflation factors coming from a common

population, let’s first of all visualize the prior to posterior update of the hyperparameters

involved. Analysing Figure 4.9, it is quite easy to understand that the value

attained by the population mean tends to be concentrated at zero. This will

have a huge influence on the values assumed by the inflation parameters because

they will be shrank toward zero. Furthermore, also the hyperposterior variance

is quite low, concentrated around 0.1.

Figure 4.9: Prior to posterior update of the common population mean used to model to the home (left) and away

(right) scored goals.

Considering the results in Figure 4.10, as expected, the values attained by the

different inflation parameters, both for home and away scored goals, are very
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similar and concentrated around 0. Without any loss of generality, it is not

possible to capture the propensity of a team to score 0 goals assuming a common

population;

Figure 4.10: 95% HPD intervals for the inflation parameters linked to home (left) and away (right) scored goals.

• the inflation factors displayed in Figure 4.11 showcase a broad range of values,

spanning from 0.032 to 0.3. Notably, the coefficients relating to Manchester

City, Arsenal, and Liverpool assume the lowest values during both home

and away matches. Nevertheless, the highest coefficient values introduce a

somewhat intricate situation. Consider the case of Crystal Palace as an

example. The team has the largest inflation factor for home goals scored and one

of the smallest for away goals scored. The coefficients’ size in Figure 2.1 shows

the team’s likelihood of scoring zero goals in a match is quite different w.r.t the

considered team. It could be contended that the values of the two coefficients

in the earlier model were markedly influenced by variations in propensities of

different teams. Conversely, a more precise depiction of the scenario can be

attained here.

In conclusion, it seems that letting the coefficients ”free”, i.e. not assuming a

common underlying population, has allowed to capture the different propensities of

not scoring. So, without any loss of generality, it can be claimed that the best choice

is to use 20 different coefficients for home (away) scored goals.
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Figure 4.11: Marginal posterior densities for p1, w (top left) and95% HPD intervals (top right). Marginal posterior

densities for p2,w considering (bottom left) and 95% HPD intervals (bottom right). Dots represent the average effect.

4.1.5 Deviance of the models: a comparison among different trials.

The Appendix A displays the deviance of the five models. The first line shows the

deviance of the Bayesian Hierarchical model (left) and the model with covariates

(right). The second line shows the deviance of the Zero-Inflated model (left) and

its modified version using hyperpriors (right). The last line shows the deviance of

the modified Zero-Inflated model without the use of hyperpriors. Table 4.1 provides

additional information:

• the hierarchical model with covariates has the lowest DIC, indicating that it is
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the optimal model in terms of balancing optimality and complexity;

• the model with the worst performance is the Modified Zero-Inflated model with

Gamma hyperpriors, as indicated by its DIC value of 2354.9;

• if the inflation factors are not assumed to come from the same population, a

lower DIC of 2260.35 is obtained.

H.M H.M.C Z.I.H.M M.Z.I.H.M.H M.Z.I.H.M

DIC 2220.65 2114.37 2322.28 2354.9 2260.35

Table 4.1: Deviance Information Criteria (DIC) for the different models.

4.2 Prediction

4.2.1 Which is the behaviour of our model during the season?

To answer the question, this subsection will display posterior predictive checks. For

each team, it will show an estimated rank and their performance in some interesting

games. The median will be used as a sufficient statistic to represent the entire posterior

distribution.

• Hierarchical model

Comparing Table 2.2 and Table 4.12 (top left), it is possible to affirm that

a general underestimation effect is acting behind the scene. The scored and

conceded goals tend to be concentrated around the average value, i.e. the

variance is quite low. This has a huge effect also on the estimated points gained

by a team, which are usually lower than the actual points. As pointed out by

the authors:

One possible well-known drawback of Bayesian hierarchical models is

the phenomenon of overshrinkage, under which some of the extreme

occurrences tend to be pulled towards the grand mean of the observations.

[1]

It is a well know phenomenon in Bayesian statistics and it is usually linked with

the Normal distribution.

Moving forward, I would like to focus on the performances of two teams, Cardiff

City andArsenal, which are the extreme cases. More into detail, the first team

suffered the largest underestimation effect (13 points) while the other the largest

overestimation one (4 points). Analysing the scored goals of the first team, I

have noticed that it tends to score 0 goals in the 45% of the matches and 1 or
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more goals in the remaining 55% of the games. Instead, the model predict that

it has scored 0 goals in the 23% of the games while only 1 goals in the others.

As can be seen, the model tends to overestimate the probability that Cardiff

City scores 1 goal in a match, while it completely underestimates the other

probability. In the table 4.2 two emblematic matches are shown with regard to

the above situation.

Home Team Away Team GH GA W L D ĜH ĜA

Cardiff City West Ham United 2 0 0.32 0.40 0.28 1 1

Manchester United Cardiff City 0 2 0.71 0.12 0.17 2 1

Table 4.2: Comparison between observed result and estimated result (median of the samples). W, L and D represent

respectively the expected probability to win, to lose and to draw.

Following the same path also for Arsenal, it can be shown that the model tends

to underestimate the event of scoring 0 goals or more than 2. On the other hand,

it has the tendency to overestimate the event of scoring 2 or 3 goals. Unlike the

previous case, it is apparent that the model can tell when Arsenal wins, loses

or draws but still has difficulty predicting the exact outcome. From table 4.3, it

seems that errors in goal estimation for one team, as is easily guessed, also affect

the prediction of other teams.

Home Team Away Team GH GA W L D ĜH ĜA

Arsenal Crystal Palace 2 3 0.61 0.18 0.21 2 1

Southampton Arsenal 3 2 0.30 0.47 0.17 1 2

Table 4.3: Comparison between observed result and estimated result (median of the samples). W, L and D represent

respectively the expected probability to win, to lose and to draw.

As you can clearly see from Figure 4.12, the difference between the two cases is

obvious. Regarding the Cardiff situation (left), a strong discrepancy can be seen

between what is estimated and what is observed. On the other hand, Arsenal’s

situation seems to be more crystal clear. In fact, the estimates obtained turn

out to be in agreement with what is actually observed.

The idea I developed after commenting on the results of this first model is that

the worst teams are penalized more by the fact that our model has downward

estimates for goal scored and conceded.
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Figure 4.12: Observed vs Estimated points. On the left it is placed the plot for Cardiff City while on the right the

Arsenal one.

• Hierarchical model with covariates

Analysing Table 4.12 (top center) it is possible to affirm that, even if a general

underestimation effect on the number of scored goals is still there, it has been

mitigated. Teams whose gained points are always underestimated (see Wolverhampton,

Cardiff City, West Ham) are ranked better by the model, which seems to

be able to recognize on average the offensive and defensive strength of a team.

Of course, far be it from me to claim that the situation is perfect, yet clear

improvements can be discerned.

Once again, I would like to focus on the performance of two teams which are

somehow iconic. On one hand Manchester City, whose general effects have

been underestimated. In particular, the general estimated points are 7 less than

the observed. Comparing the relative frequencies of the observed and estimated

scored goals, it is easy to notice an overestimation of the event {Scores 0 goals}.
From Table 4.4, it is possible to notice the aforementioned effect. To be consistent

with the discussion, these two games were played during the first 5 weeks, where

the information I have got is ”poor”.

Home Team Away Team GH GA W L D ĜH ĜA

Arsenal Manchester City 0 2 0.39 0.29 0.32 1 1

Manchester City Huddersfield Town 6 1 0.48 0.28 0.24 1 1

Table 4.4: Comparison between observed result and estimated result (median of the samples). W, L and D represent

respectively the expected probability to win, to lose and to draw.
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On the other handWest Ham United, whose general effects have been estimated

in a proper way. Unlike the previous case, the event {Scores 0 goals } has been

heavily underestimated, as well as the event {Scores more than 2 goals}. Into

the Table 4.5 are reported 2 interesting games, where the performances of West

Ham United were overestimated.

Home Team Away Team GH GA W L D ĜH ĜA

West Ham United Watford 0 2 0.61 0.2 0.32 2 1

Burnely West Ham United 2 0 0.22 0.22 0.56 1 2

Table 4.5: Comparison between observed result and estimated result (median of the samples). W, L and D represent

respectively the expected probability to win, to lose and to draw.

• Zero-Inflated Hierarchical model

Looking at Table 4.12 (top right) and Table 2.2, there is a widespread underestimation

of the goals scored and conceded by each team, which has a negative impact on

their total points. There is a tendency for teams to be underestimated in terms

of points, with the exception of the highest ranked teams. Comparing those

results with the baseline model (top left), we can see that the number of goals

is concentrated around the mean, indicating a low variance. To be coherent

with the discussion, I want to focus on the performances of two teams. Firstly

Arsenal, which is the team with the greater overestimation effect in terms of

points won (+4). More specifically, the model seems to slightly overestimate

the probability that the team will score 2 goals, while perfectly estimating the

probability that they will score 1 goals. As can be clearly seen from the table

4.13, when Arsenal plays mid-low ranked teams, the model tends to give them

a higher propensity to win. This can penalise other teams in the long run,

making them look ”poorer” (in terms of attacking and defensive strength) than

they actually are.

Home Team Away Team GH GA W L D ĜH ĜA

Arsenal Brighton & Hove Albion 1 1 0.72 0.17 0.1 2 0

Leicester City Arsenal 3 0 0.38 0.34 0.28 1 1

Table 4.6: Comparison between observed result and estimated result (median of the samples). W, L and D represent

respectively the expected probability to win, to lose and to draw.

Secondly Watford, which is the team that suffers the greater underestimation

effect in terms of points gained (−15). For this team, the model seems to be

quite good when it has to predict 2 as the number of goals scored, while it

has a general overestimation effect for 0 and 1. As you can see from table 4.7,
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Watford has a prediction overestimate of 1 − 1, which is the most predicted

result for this team.

Home Team Away Team GH GA W L D ĜH ĜA

Watford Tottenham 2 1 0.35 0.40 0.25 1 1

Cardiff City Watford 1 5 0.30 0.41 0.30 1 1

Table 4.7: Comparison between observed result and estimated result (median of the samples). W, L and D represent

respectively the expected probability to win, to lose and to draw.

• Modified Zero-Inflated Hierarchical model

Figure 4.12 (bottom left) illustrates a consistent underestimation effect on the

number of points gained and the number of goals scored. Additionally, it appears

that the current situation is not significantly distinct from the previous model,

suggesting that perhaps the enhancements have not been attained. Before progressing

further in the argument, I would like to assess the performance of two teams,

as usual. Arsenal displays an overestimation effect when it comes to the

number of gained points (+4). The posterior marginal distributions of scored

goals demonstrate an overestimation of the event where the team scores 2 goals

during home matches, while the other events are underestimated. However, the

posterior predictive for away goals suggest that the model favours the event

where the team scores 0 goal over all others. Analysing Figure 4.13, one can

observe the underestimation effect discussed earlier. However, the points gained

remain coherent for all the games, except for the last four.

Figure 4.13: Estimated cumulative goals vs observed (left). Estimated cumulative points vs observed (right).

In Table 4.8, some intriguing games are presented that help comprehending my
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prior argument. In the first game, Arsenal’s ability may have been overestimated,

whereas in the second game, it may have been underestimated.

Home Team Away Team GH GA W L D ĜH ĜA

Arsenal Crystal Palace 2 3 0.60 0.16 0.24 2 1

Fulham Arsenal 1 5 0.21 0.54 0.21 1 2

Table 4.8: Comparison between observed results and estimated results (median of the samples from the posterior

predictive distribution). W, L and D represent respectively the expected probability to win, lose and to draw.

Conversely,Huddersfield Town exhibits a underestimation effect with regards

to the points obtained (−6). In terms of the posterior predictive distribution for

goals scored at home, it can be said that the model accurately predicts the

club’s goals. This is due to the fact that the team only scores either 0 or 1

goals when playing at their home stadium. However, the model has a tendency

to overestimate the number of 0 goals scored when the team is playing away.

Again, this is because the club highlighted in the observed games tends to score

more when playing away from its home stadium. From Figure 4.13, it is apparent

that the underestimation of goals scored, particularly when the team is playing

away, has a negative impact on the estimation of the total points gained.

Figure 4.14: Estimated cumulative goals vs observed (left). Estimated cumulative points vs observed (right).

In Table 4.9, there are two noteworthy matches. Specifically, the first match

shows a goodness of fit score of zero goals, while the second match indicates a

reduced likelihood of scoring more than zero goals, as suggested by the preceding

discussion.
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Home Team Away Team GH GA W L D ĜH ĜA

Huddersfield Town Tottenham Hotspur 0 2 0.11 0.65 0.24 0 2

Wolverhampton Wanderers Huddersfield Town 0 2 0.50 0.17 0.33 1 0

Table 4.9: Comparison between observed results and estimated results (median of the samples from the posterior

predictive distribution). W, L and D represent respectively the expected probability to win, lose and to draw.

• Modified Zero-Inflated Hierarchical model without hyperpriors

Upon comparing Table 4.12 (bottom center) and Table 2.2, the model appears

to adequately predict the final rankings of the English Premier League, with a

consistent underestimation of scored goals. In particular, it fails to fully recognize

the true final position of mid-ranking teams, which is quite understandable.

As noted in the descriptive section, the majority of these teams share similar

characteristics. In conclusion, despite the typical challenges, I can confirm that

the situation has improved in comparison to the previous model. Once again i

would like to focus on the specific case of two teams, which represent two far away

situations. Tottenham, which experiences the largest overestimation effect in

terms of points (+7), underwent underestimation in terms of the number of goals

scored and conceded, as every other team did. The analysis of the posterior

predictive distribution regarding the number of scored goals both at home and

away demonstrates that there is a general overestimation of the impact when

the team scores one goal, while there is an underestimation of all other events.

Examining Figure 4.15, it is evident that the estimated cumulative distribution

for the scored goals tends to underestimate the real effect. Additionally, the

number of points appears to be less coherent with the observations after the first

27 matches.

Figure 4.15: Estimated cumulative goals vs observed (left). Estimated cumulative points vs observed (right).
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Once again, attention is drawn to two noteworthy matches that improve understanding

of the situation at hand. Table 4.10 displays the aforementioned matches where

the model has overestimated Tottenham’s ability.

Home Team Away Team GH GA W L D ĜH ĜA

Tottenham Wolverhampton Wanderers 1 3 0.61 0.16 0.23 2 1

Burnley Tottenham 2 1 0.26 0.49 0.25 1 1

Table 4.10: Comparison between observed results and estimated results (median of the samples from the posterior

predictive distribution). W, L and D represent respectively the expected probability to win, lose and to draw.

Wolverhampton Wanderers suffer the greatest underestimation in points,

with a difference of −15. Upon examining the posterior predictive distribution

of goals scored, it can be argued that there is a consistent overestimation of the

occurrence of one goal being scored, a reasonable estimation for zero goals being

scored and an underestimation of all other events. Observing Figure 4.16, it is

evident that both the estimated cumulative distribution for the points and the

scored goals are below the observed levels, leading to the conclusion that in this

instance, the underestimation is stronger as compared to the previous case.

Figure 4.16: Estimated cumulative goals vs observed (left). Estimated cumulative points vs observed (right).

From Table 4.11, you can observe two intriguing matches played byWolverhampton

Wanderers, providing further evidence to support the ideas previously developed.
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Home Team Away Team GH GA W L D ĜH ĜA

Wolverhampton Wanderers Arsenal 3 1 0.42 0.32 0.26 1 1

Newcastle United Wolverhampton Wanderers 1 2 0.45 0.25 0.30 1 1

Table 4.11: Comparison between observed results and estimated results (median of the samples from the posterior

predictive distribution). W, L and D represent respectively the expected probability to win, lose and to draw.

In conclusion, it can be argued that the use of covariates and multiple inflation

factors can aid in predicting a team’s behaviour throughout a season. However, there

are still unresolved issues, particularly with mid-ranked teams. Further improvements

can be made in that direction.

Team Pts GF GA Pos

Manchester City 100 76 17 1

Liverpool 96 73 15 2

Chelsea 66 49 34 5

Tottenham Hotspur 70 55 34 4

Arsenal 74 60 43 3

Manchester United 59 50 44 6

Wolverhampton Wanderers 47 39 36 8

Everton 50 42 37 7

Leicester City 45 42 41 9

West Ham United 41 42 46 11

Watford 41 42 48 12

Crystal Palace 46 42 44 10

Newcastle United 37 34 40 14

Bournemouth 38 44 55 13

Burnley 29 39 54 15

Southampton 27 37 54 17

Brighton & Hove Albion 29 30 47 16

Cardiff City 21 29 55 18

Fulham 16 29 64 19

Huddersfield Town 13 15 61 20

Team Pts GF GA Pos

Manchester City 91 84 23 2

Liverpool 96 84 24 1

Chelsea 64 53 36 5

Tottenham Hotspur 70 59 35 3

Arsenal 67 61 45 4

Manchester United 64 60 54 6

Wolverhampton Wanderers 50 44 36 7

Everton 49 43 40 10

Leicester City 51 47 43 9

West Ham United 54 47 46 8

Watford 42 42 50 13

Crystal Palace 45 43 43 11

Newcastle United 43 39 45 12

Bournemouth 29 39 62 15

Burnley 29 35 59 16

Southampton 31 38 58 14

Brighton & Hove Albion 27 33 51 18

Cardiff City 29 32 58 17

Fulham 20 27 67 19

Huddersfield Town 15 19 64 20

Team Pts GF GA Pos

Manchester City 98 76 14 1

Liverpool 98 72 16 2

Chelsea 66 49 32 5

Tottenham Hotspur 68 54 34 4

Arsenal 74 61 42 3

Manchester United 58 50 43 6

Wolverhampton Wanderers 44 38 37 9

Everton 51 43 37 7

Leicester City 51 42 38 8

West Ham United 44 42 45 10

Watford 35 40 49 14

Crystal Palace 41 40 44 11

Newcastle United 37 34 39 13

Bournemouth 40 44 53 12

Burnley 30 36 53 15

Southampton 30 37 53 16

Brighton & Hove Albion 27 28 48 17

Cardiff City 21 28 55 18

Fulham 16 28 66 19

Huddersfield Town 13 15 60 20

Team Pts GF GA Pos

Manchester City 96 79 16 2

Liverpool 98 71 12 1

Chelsea 68 49 30 4

Tottenham Hotspur 67 53 33 5

Arsenal 75 63 42 3

Manchester United 58 51 44 6

Wolverhampton Wanderers 49 40 35 7

Everton 49 42 37 8

Leicester City 49 41 39 9

West Ham United 45 41 45 10

Watford 36 39 50 14

Crystal Palace 44 40 42 11

Newcastle United 37 35 38 13

Bournemouth 40 46 58 12

Burnley 30 34 53 16

Southampton 32 37 52 15

Brighton & Hove Albion 25 27 50 17

Cardiff City 22 27 55 18

Fulham 18 28 64 19

Huddersfield Town 10 12 60 20

Team Pts GF GA Pos

Manchester City 97 75 12 2

Liverpool 100 68 10 1

Chelsea 63 43 28 5

Tottenham Hotspur 78 52 26 3

Arsenal 73 62 37 4

Manchester United 58 46 41 6

Wolverhampton Wanderers 42 32 33 11

Everton 51 35 32 7

Leicester City 46 36 35 10

West Ham United 41 33 42 12

Watford 41 33 43 13

Crystal Palace 51 36 35 8

Newcastle United 37 28 34 16

Bournemouth 48 35 49 9

Burnley 39 32 46 15

Southampton 40 33 45 14

Brighton & Hove Albion 32 22 44 17

Cardiff City 32 20 47 18

Fulham 20 20 61 19

Huddersfield Town 16 11 54 20

Table 4.12: Estimated points, goals for and goals against considering the median as a summary statistics for the

different parameters involved in the chain. Then, the final rank according to the estimated points have been built.

4.2.2 Are we able to approximate the marginal distributions?

Thanks to the posterior predictive distribution (3), it is possible to estimate the

marginal distribution for the number of home/away scored goals. More into detail,

given a posterior sample coming from the aforementioned distribution, the median is

used as a sufficient statistic and comparisons can be made between the home and away
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estimated number of goals for each new game. In particular:

• for the first model, looking at the Table 4.13, a very large discrepancy between

estimated and observed values can be noticed. The model cannot reliably predict

more than two goals (both for home and away teams) and predicts 1 very

frequently. At the end of the day, this is something to put into consideration as

they are rare events that happen in less than 1 percent of matches;

home 0 1 2 3 4 5 6

Observed 0.23 0.31 0.25 0.13 0.058 0.021 0.008

Estimated 0.04 0.60 0.32 0.05 0 0 0

away 0 1 2 3 4 5 6

Observed 0.31 0.32 0.23 0.09 0.023 0.015 0.002

Estimated 0.17 0.74 0.09 0 0 0 0

Table 4.13: Observed vs estimated relative frequency of home and away scored goals.

• for the model with covariates, from Table 4.14 it is possible to notice that both for

the event {0 scored goal} and {2 or more scored goals}, a strong underestimation

effect is present. Reversely, for the event {1 scored goal}, an overestimation effect

is acting behind this scene. Comparing these results with Table 4.13, it is feasible

to argue that the situation has slightly improved due to the model’s ability to

predict higher values with greater probability. However, the overestimation of

the event {1 scored goal} is still too high;

home 0 1 2 3 4 5 6

Observed 0.23 0.31 0.25 0.13 0.058 0.021 0.008

Estimated 0.08 0.61 0.24 0.05 0.024 0 0.003

away 0 1 2 3 4 5 6

Observed 0.31 0.32 0.23 0.09 0.023 0.015 0.002

Estimated 0.14 0.67 0.15 0.03 0.008 0 0

Table 4.14: Observed vs estimated relative frequency of home and away scored goals.

• for the third model, with regards to the estimation of the number of goals scored

by both home and away teams in the league, it is evident from table 4.15 that,

once again, the model failed to accurately predict values beyond 2. Moreover,

the purpose of implementing the ZIP distribution was to counteract the effect

of predicting 1 and to increase the frequency of predicted values of 0. However,

owing to the low values of the two inflation parameters, this objective was not

satisfactorily met;

home 0 1 2 3 4 5 6

Observed 0.23 0.31 0.25 0.13 0.058 0.021 0.008

Estimated 0.04 0.61 0.31 0.04 0.002 0 0

away 0 1 2 3 4 5 6

Observed 0.31 0.32 0.23 0.09 0.023 0.015 0.002

Estimated 0.18 0.73 0.08 0 0 0 0

Table 4.15: Observed vs estimated relative frequency of home and away scored goals.
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home 0 1 2 3 4 5 6

Observed 0.23 0.31 0.25 0.13 0.058 0.021 0.008

Estimated 0.06 0.56 0.32 0.06 0.003 0 0

away 0 1 2 3 4 5 6

Observed 0.31 0.32 0.23 0.09 0.023 0.015 0.002

Estimated 0.21 0.70 0.09 0 0 0 0

Table 4.16: Observed vs estimated relative frequency of home and away scored goals.

• for the fourth model, the Table 4.16 indicates that the situation has not improved

in comparison to the baseline situation 4.13, and the strategy to increase the

estimation of zero has failed.

• for the last model, Table 4.17 shows that, compared to Table 4.13, the model

is now capable of more precisely predicting the probability of the event {team
scores 0 goal} for both home and away matches, marking the first time this has

been achieved. It is worth considering the introduction of several inflation factors

and some improvements have been achieved.

home 0 1 2 3 4 5 6

Observed 0.23 0.31 0.25 0.13 0.058 0.021 0.008

Estimated 0.21 0.38 0.35 0.06 0.003 0 0

away 0 1 2 3 4 5 6

Observed 0.31 0.32 0.23 0.09 0.023 0.015 0.002

Estimated 0.34 0.60 0.06 0 0 0 0

Table 4.17: Observed vs estimated relative frequency of home and away scored goals.

In conclusion, It can be affirm that a model which is able to estimate low number

of goals has been achieved, while there is still a problem to estimate ”rare” events.

4.2.3 Are we able to study the joint distribution? Are we able to understand

if a team is going to win/lose/draw?

As a last point of discussion, [1], [11] offer the recommendation to examine the posterior

predictive distribution of specific events, namely to study the joint distribution of the

scored goals. Remember that the original aim of this report is to find a way to explain

match results that are bivariate. Additionally, the distribution of goal differences is

analysed to understand the frequency of draws predicted by the model.

Starting from the baseline model, Figure 4.17 shows that the model significantly

overestimates the probability of the ’1-1’ event but fails to accurately predict ’1-0’ and

’0-1’ events. This is linked to the fact that it usually overestimates the likelihood of

a team (whether home or away) scoring one goal. Additionally, it appears impartial

regarding match results, as it cannot accurately predict whether a team will win or

lose.
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Figure 4.17: Observed vs Estimated probability of some interesting match outcomes (left). Observed vs Estimated

probability for goals difference (right).

Once covariates have been added to the model, comparing Figure 4.12 and Figure

4.18, it is clear that the model still overestimates the event ”1-1” and underestimates

the events ”1-0” and ”0-1”. Additionally, the amount of estimated draws (event ”0”)

remains overestimated, but there is a gradual improvement in the fit for other events.

In greater detail, the model can now assess matches with a higher number of scored

goals with greater confidence, which it can be noticed that the goal difference takes

higher absolute values. In conclusion, it can be affirmed that progress has been made

towards developing an improved model. The next step is to define a model capable

of predicting values with high confidence, not restricted to one. Additionally, efforts

should be made to reduce underestimation of the prediction of zeros.

Figure 4.18: Observed vs Estimated probability of some interesting match outcomes (left). Observed vs Estimated

probability for goals difference (right).
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Taking into account two inflation factors, which has been used to reduce the

underestimation of zeros, no significant disparities can be observed when scrutinising

Figure 4.17 and Figure 4.19. The inclusion of inflation factors does not significantly

affect the model’s forecast. As previously mentioned, the model is inadequate at

correcting the overestimation of 1 and underestimation of 0. This could be due to the

assumption of one inflation parameter for all teams being too restrictive, as expected

variations occur throughout the season. Considering that the inflation factor influences

the predicted number of zeros, increasing the number of coefficients in the model may

have a beneficial impact.

Figure 4.19: Observed vs Estimated probability of some interesting match outcomes (left). Observed vs Estimated

probability for goals difference (right).

Figure 4.20: Observed vs Estimated probability of some interesting match outcomes (left). Observed vs Estimated

probability for goals difference (right).

The addition of several linked inflation factors has not improved the situation.
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Furthermore, Figure 4.20 illustrates that the model still overestimates the occurrence

of the ’1-1’ event and the number of predicted draws. In general, assuming parameters

from the same population has not improved the model and it is pretty far from the

reality.

Comparing Figure 4.21 with the outcomes obtained by all other models, it can

be claimed that although the model still tends to overestimate the event ”1-1”, this

has been reduced (note that the estimated probability decreased from around 0.5 to

around 0.3). It can be stated without any loss of generality that the model is also

more confident about the results, as shown by the lowered estimated probability of

draws. In conclusion, implementing one inflation factor for the team has resulted in

some improvement.

Figure 4.21: Observed vs Estimated probability of some interesting match outcomes (left). Observed vs Estimated

probability for goals difference (right).
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5 Dynamic Model

Previous models assumed that the season in which a match is played has no direct

effect on the outcome of a match, meaning that the effect of time is negligible. The

underlying random effects are constant throughout the season, which means that team

strength does not change over time. However, using time-related variables, I have

shown that time can have a significant impact on the outcome of a match, which is

quite understandable. In fact, a team’s conditions can vary greatly over the course of

a season. In addition, I have decided not to go down the road of using a zero-inflated

modelling, as the number of extra zeros was not correctly estimated anyway. The

remainder of this section will be a presentation of the new model but, for the time

being at least, the covariates are not directly part of the model.

Removing the non-time-dependence assumption requires a generalisation of the model

introduced by [1]. In particular, the concept of Dynamic Generalised Linear

models must be presented in detail, as described by [20], and the previous model

adapted accordingly. In order to accomplish the previous task, a slight modification

of the notation is required. Denoting t = 1, . . . , 38 as the game week and j = 1, . . . , 10

as one of the matches played during that week, it is possible to uniquely identify a

game using those two indexes. Again w = 1, . . . , 20 12 represents a generic team.

The model can be formalized in the following way. First of all, yt,j,1 and yt,j,2 represent

respectively the number of goals scored by the home and away team in the j-th game

of the t-th week. Then, following the usual Bayesian setup, yt,j,1, yt,j,2|θt,j,1, θt,g,2
C.I
=

yt,j,1|θt,j,1 · yt,h,2|θt,j,2, where θt,j,1 and θt,j,2 represent the scoring intensities of the home

and away teams in the j-th match of the t-th week. Define:

• Observation Model: the structure of the likelihood is similar to the previous

case, but with an increased number of parameters. The identifiable constraints

on the parameters remain the same and are valid for each time. It is important

to note that the parameterization with two intercepts is considered as in the

Explanatory Model of Section 3.

⋆ yt,j,1|θt,j,1 ∼ Poisson(θt,j,1) and yt,j2|θt,j,2 ∼ Poisson(θt,j,2)

⋆

log(θj,t,1) = uh + atth[g],t + defa[g],t

log(θj,t,2) = ua + atta[g],t + defh[g],t

⋆ the likelihood can be written in the following way:

L (θ) = f
(
y1,1,1, y1,1,2, . . . , y38,10,1, y38,10,2|θ1,1,1, θ1,1,2, . . . , θ38,10,1, θ38,10,1

)
c.i
= f

(
y1,1,1, . . . , y38,10,1|θ1,1,1, . . . , θ38,10,1

)
· f
(
y1,1,2, . . . , y38,10,2|θ1,1,2, . . . , θ38,10,2

)
i.d
=

38∏
t=1

10∏
j=1

f
(
yt,j,1|θt,j,1

)
· f
(
yt,j,2|θt,j,2

)
12from now on, the total number of teams will be represented by n.
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⋆
20∑

w=1

attw,t = 0 and
20∑

w=1

defw,t = 0 ∀t = 1, . . . , 38

• Evolution Equation: a random walk stochastic process is employed to update

the parameters associated with the attacking and defensive abilities. The underlying

assumption is that a team’s performance is not significantly different from its

previous values, without taking into account possible ’shocks’. First of all, define

W = σ2I20, where σ2 is known as the evolution variance. The variance of

matrix is assumed to be constant over time and equal for all the teams. Then,

define G ∈ 20 × 20 as the evolution matrix. For the purpose of simplicity,

assume that only the offensive/defensive ability of the same team affects its

future, which implies that the evolution matrix is equal to the identity matrix.

The prior distributions can be specified as follows:

⋆



att.,t = Gatt.,t−1 + wt = att.,t−1 + wt wt ∼ MVNn (0,W )

def
.,t
= Gdef

.,t−1
+ w̃t = def

.,t−1
+ w̃t w̃t ∼ MVNn (0,W )

att.,0 ∼ MVNn (matt,W0)

def
.,0

∼ MVNn

(
mdef ,W0

)
uh ∼ N(0, 0.001) ua ∼ N(0, 0.001)

According to [15], the constraints are naturally satisfied if 1Tnmatt = 0 and

1Tnmdef = 0 13 and W and W0 are transformed into appropriate variance and

covariance matrices. Specifically, the diagonal variances reflect the actual previously

specified variance and a small negative covariance is used. 14.

R = σ2 n

n− 1

(
In −

1

n
1n1

T
n

)
= σ2 n

n− 1


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1
n

. . . . . . 1
n

...
. . . . . .

...
... . . .

. . .
...

1
n

. . . 1
n

1
n




(6)

= σ2 n

n− 1


n−1
n

− 1
n

. . . − 1
n

− 1
n

n−1
n

. . . − 1
n

... . . .
. . .

...

− 1
n

. . . − 1
n

n−1
n

 =


σ2 − σ2

n−1
. . . − σ2

n−1

− σ2

n−1
σ2 . . . − σ2

n−1
... . . .

. . .
...

− σ2

n−1
. . . − σ2

n−1
σ2

 (7)

Given all of these specifications, it is possible to derive a closed form for the prior

distributions associated with the model:

13this means that the hyperprior values for the first random walk iteration must sum to zero.
14the same reasoning can be applied to the transformation of W0 into R0, but for the sake of brevity

it will be omitted.
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π
(
σ2, uh, uaatt, def

)
= π (home) π(σ2)

38∏
t=1

π
(
att,t|att,t−1

)
π
(
def

,t
|def

,t−1

)
π(att,0)π(def ,0

) =

= logGamma(0.01, 0.01)π(σ2)
38∏
t=2

MVNn

(
att,t−1, R

)
MVNn

(
def

,t−1
, R
)
MVNn

(matt, R0)MVNn

(
mdef , R0

)
Sampling from the distribution is required due to the complexity of the closed form

of the posterior distribution. A Gibbs Sampler is adopted to approximate the desired

distribution, as with previous settings. Considering the usual Bayesian updating rule:

π(θ|y) ∝ L (θ)π(θ) =
38∏
t=1

10∏
j=1

f
(
yt,j,1|θt,j,1

)
· f
(
yt,j,2|θt,j,2

)
π (home) π(σ2)

38∏
t=1

π
(
att,t|att,t−1

)
π
(
def

,t
|def

,t−1

)
π(att,0)π(def ,0

)

Before commenting on the obtained results, the following two subsections will

present two remarks regarding the previous model specification.

5.1 Rjags setup

Although the model specification has been completed, a problem arises in the simulation

process due to the lack of full rank in both R and R0, making it impossible to

sample from a multivariate normal distribution (the computation of the inverse of the

variance-covariance matrix cannot be done). [15] proposed to make slight modifications

to the simulation task to address the issue. A solution will be shown for the attacking

parameters, but it can be applied in the same way for the defensive parameters.

The new approach consists in the sampling of n − 1 unconstrained parameters

ct = [ct,1, . . . , ct,n−1]
T from a Multivariate Normal distribution centered in the vector

of zeros and with variance-covariance matrix equal to St, where:

St = σ2 n

n− 1

(
In−1 + 1n−11

T
n−1

)
= σ2 n

n− 1




1 0 . . . 0

0 1 . . . 0
... . . .

. . .
...

0 . . . 0 1

+
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. . . . . .
...
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Define then a matrix J as follows:

J =

In−1 − 1
n
1n−11

T
n−1

1
n
1n−1

− 1
n
1Tn−1

1
n

 =


n−1
n

− 1
n

. . . 1
n

− 1
n

. . . . . .
...

... . . .
. . .

...

− 1
n

. . . . . . 1
n


After performing some calculations, it is possible to demonstrate the resulting

values of att,t = att,t−1 + ut represent the required sampled values of the attack

parameters with the required evolution structure and variance-covariance structure

given by 6, and with the identifiability constraint holding for all t, where ut =

Jc̃t
15. Indeed, upon calculating the expected value and the variance-covariance

matrix associated with the random att,t utilizing the aforementioned methodology,

it can be demonstrated that these computed statistical properties align precisely with

those previously specified. The same reasoning can be applied to sample from the

distribution of att,0 and for the defensive parameters.

The code reproducing the method described above can be found in the Appendix

B.

5.2 Evolution Variance

As you may have noticed, no assumptions have been made about the distribution of

the evolution variance so far. This is a crucial point as its value has a critical impact

on the stochastic changes in the offensive and defensive parameters, making it a very

sensitive choice. In order to decide which value is more accurate to use, an empirical

study has to be done [15]. Specifically, a grid search is performed over different fixed

values to find the one that maximises P1 and it is used as the mean of a low variance

Gamma distribution to determine the values of the hyperparameters 16. This measure

reflects the short-term predictive ability of the model and it is defined as follows:

P1 =

 380∏
k=1

P(Ok)

 1
380

= exp

 1

380
log

 380∏
k=1

P(Ok)

 = exp

 1

380

380∑
k=1

log
(
P(Ok)

)
where P(Ok) is the one match ahead predicted probability that match k will result in

the final observed outcome, Ok, of either ”home”, ”draw” or ”away”. The index thus

represents the geometric expectation associated with the probability of the previously

described event. More specifically, given the realisations of the posterior predictive

distribution for the observed match, it is possible to easily estimate the probability

by simply calculating the fraction of time that the corresponding event occurred.

15c̃t = [ct,1, . . . , ct,n−1, 0]
16an informative type of distribution is used once the optimal values have been found.
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Subsequently, to account for the overall adequacy of the different models, the DIC

is calculated, in conjunction with the metric P1.

To evaluate the parameter order, I gradually increased the value of the evolution

variance from an initial value of 0.001 to an upper bound of 1000. Notably, I found

that a value greater than 0.01 was unlikely due to the fact that despite of the apparent

growth of P1, the DIC exhibited a disproportionately large increase in comparison to

outcomes achieved with variances below 0.01. Subsequently, a more focused exploration

was undertaken within the narrower interval spanning from 0.001 to 0.1 to discern the

optimal value of the evolution variance.

Upon scrutinizing the data presented in Figure 5.1, it becomes apparent that a universally

optimal value does not emerge. However, discernible trends suggest that a sub-optimal

value for the evolution variance may be identified at 0.006. This assertion is substantiated

by the minimization of the DIC at this specific value. Moreover, beyond this point,

any subsequent increase in the P1 metric appears to be inconsequential. Therefore, it

can be reasonably inferred that the evolution variance prior distribution is a Gamma

with mean equal to 0.006, i.e. a Gamma(3.6,600). The graphical representation in

Figure 5.2 illustrates the prior-to-posterior update of the evolution variance, revealing a

notable concentration around the value of 0.003 with a diminished level of uncertainty.

Figure 5.1: P1 measure (left) and DIC (right) for different values of the evolution variance.

Upon identifying the pertinent distribution associated with the parameter σ2, it

became evident that the selection of σ2
0 exhibited a nominal impact on both DIC and

P1 when considering a judiciously chosen range of values. Consequently, a pragmatic

decision was made to establish a fixed value for σ2
0, with particular attention to
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maintaining its influence within an acceptable range. The chosen value for σ2
0 was

set at 0.003 based on the previous reasoning.

Figure 5.2: Prior (left ) to posterior (right) update associated to the evolution variance σ2.

5.3 Results

First of all, it is essential to provide a succinct overview of the experimental framework.

Due to the considerable number of parameters involved and the substantial computational

resources required, I opted to conduct a reduced number of simulations drawn from the

posterior distribution. Specifically, after several preliminary trials, a decision was made

to perform 5000 simulations utilizing the MCMC sampler. These simulations included

a burn-in period of 1000 iterations and a thinning factor of 2. In this subsection, I

will address the same research questions delineated in Section 4, even though more

emphasise is put on the estimation side.

5.3.1 Which is the impact of the offensive and defensive parameter?

Prior to delving into the analysis, it is pertinent to examine the influence of matt and

mdef on the sequences of attacking and defensive capabilities. In principle, adhering to

the conventional Bayesian framework, the choice of initial values for these parameters

is expected to exert negligible impact. Nevertheless, considering the utilization of a

random walk update, it is prudent to empirically investigate whether this choice indeed

affects the underlying random effects. To explore this impact, various initializations

were tested. One method involved obtaining initial values by subtracting the league

average from the offensive and defensive propensities (see Figure 3.1). Additionally,
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the others consider Gaussian distributions centered at zero with low variance. It is

important to note that, to satisfy constraints, the sum of attacking and defensive

parameters must equate to zero.

Surprisingly, the choice of the starting values had a substantial impact on both the

values attained by the posterior distribution of the random effect and the goodness

of fit of the entire model. Notably, randomly initialized models exhibited a greater

DIC and a lower P1 compared to the model utilizing actual scoring propensities of

the teams. Furthermore, the posterior distribution associated with the underlying

random effects varied significantly. In summary, the choice of the starting values for

the offensive and defensive abilities is fundamental and should not be underestimated
17.

This part delves into the analysis of random effects trends following the selection

of initial values. Due to the high number of parameters (38 Game weeks, 20 teams, 2

teams for each game), it is not possible to report a deep study about all of them. I

observe two different trends analysing the median attained at each time for the random

effects. The first trend is characterized by a continuous increase or decrease, signaling

potential issues with the initial value selection. Conversely, the second trend, marked

by general stationarity, suggests stability in portraying team conditions (Figure 5.3).

Additionally, it is noteworthy that the time series pertaining to both offensive and

defensive capabilities exhibit a concentration around values approximated through

non-dynamic models (Figure 4.2).

Figure 5.3: Time series of the offensive (left) and minus defensive (right) random effects for some team considering

the median of the posterior distribution as a summary statistic.

17The author of the paper [15] suggests using the values estimated via the non-dynamic model in

the previous season, but this is an arbitrary choice given that three teams were actually different.
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To sum up, emphasizing the critical role of initial parameterization in shaping

random effects trajectories, random effects remain effective in reflecting the intricate

dynamics of offensive and defensive team conditions throughout a season. Nevertheless,

it is essential to acknowledge that additional advancements are needed in mitigating

the influence exerted by the starting values. Further research and development in this

direction are imperative to enhance the robustness and reliability of random effects

in modeling the nuanced fluctuations observed in team performance throughout a

sporting season.

5.3.2 Does a ”home” effect really exist?

Considering the adopted parametrization, remember that the home effect can be

interpreted as the difference between the two intercepts involved in the Poisson regressions.

Furthermore, it is assumed to be constant through the season, which is a reasonable

hypothesis. In agreement with [1], [11] and my previous results, a positive home effect

still exists. In particular, analysing the posterior distribution, it has a positive average

value of 0.209 (95% HPD interval [0.09, 0.33]).

Figure 5.4: Prior (left ) to posterior (right) update associated to the difference between the two intercepts.

In summary, the analysis in Section 4 and Figure 5.4 strongly supports the existence

of a home advantage, consistently leading to a positive impact on the number of goals

scored by the home team. This empirical evidence underscores the significant role of

the home environment in shaping match outcomes, contributing valuable insights to

sports dynamics.
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5.3.3 Are we able to approximate the marginal/joint distributions?

The mandatory execution of predictive checks serves as a crucial step in empirically

establishing the newfound methodology’s reliability. A thorough comparison between

the densities presented in Table 5.1 and those expounded upon in Section 4 elucidates a

discernible refinement in the estimation of marginal distributions. The model exhibits

a notable inclination toward predicting a broader range of values with heightened

probabilities, indicative of an overall improvement in predictive accuracy. Notwithstanding

these advancements, certain residual challenges persist in the predictive framework.

Upon close examination of Figure 5.5, it becomes apparent that a prevailing tendency

towards overestimation in the generated draws is still observable, albeit with a degree

of attenuation. It is pertinent to note that, despite these persisting challenges, the

model evinces a commendable ability to effectively forecast match outcomes. The

incorporation of a temporal dimension has been fundamental in providing a nuanced

understanding of match results. While acknowledging the potential for further refinements,

it can be asserted that the model, on the whole, demonstrates a proficient capacity to

predict match outcomes. This substantiates the significance of temporal considerations

in refining predictive models for enhanced accuracy and reliability.

home 0 1 2 3 4 5 6

Observed 0.23 0.31 0.25 0.13 0.058 0.021 0.008

Estimated 0.14 0.51 0.25 0.06 0.002 0.005 0.005

away 0 1 2 3 4 5 6

Observed 0.31 0.32 0.23 0.09 0.023 0.015 0.002

Estimated 0.21 0.56 0.17 0.03 0.007 0 0

Table 5.1: Observed vs estimated relative frequency of home and away scored goals.

Figure 5.5: Observed vs Estimated probability of some interesting match outcomes (left). Observed vs Estimated

probability for goals difference (right).
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5.4 Is really useful to consider separately attacking and defensive

abilities?

In the analysis of Figure 5.3, a noteworthy observation emerges, suggesting that certain

teams exhibit a consistent trend in the relationship between offensive and defensive

random effects throughout the entire season. This observation prompts consideration

for a novel parameterization approach, wherein each team possesses a single random

effect for each game week, encapsulating the overall team dynamics. To elaborate

further, let ovw,t denote the vector of random effects associated with the overall team

shape for a given week. In order to make this conceptual shift, a slight modification

to the existing model is required:

•

log(θj,t,1) = uh + (ovh[g],t − ova[g],t)

log(θj,t,2) = ua + (ova[g],t − ovh[g],t)

•
20∑

w=1

ovw,t = 0 ∀t = 1, . . . , 38

•



ov.,t = ov.,t−1 + wt wt ∼ MVNn (0,W )

ov.,0 ∼ MVNn (mov,W0)

uh ∼ N(0, 0.001) ua ∼ N(0, 0.001)

σ2 ∼ Gamma(3.6, 600)

The likelihood and posterior distribution of the model exhibit a similar structure

rather than before, whereas the prior distribution can be articulated as follows 18:

π
(
σ2, uh, uaov,

)
= π (home) π(σ2)

38∏
t=1

π
(
ov,t|ov,t−1

)
π(ov,0)π(def ,0

) =

= N(0.01, 0.01)Gamma(3.6, 600)
38∏
t=2

MVNn

(
ov,t−1, R

)
MVNn (mov, R0)

In the initial analysis, it is evident that a home effect persists, as expected, with

an average positive value of 0.21 and a 95% HPD interval of [0.09, 0.34]. The focus

now shifts towards the posterior values obtained for the random effects. Without loss

of generality, an examination of these parameters suggests their ability to encapsulate

the overall condition of a team, where positive values denote an enhanced state and

negative values indicate a less favorable condition.

Upon scrutinizing Figure 5.6, two notable observations emerge. Firstly, a discernible

resemblance exists between the trends depicted in this model and those observed

18Note that also in this case, in order to fulfill the constraint, R and R0 have to be modified into

W and W0 and the components of the vector mov sum up to 0.
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in Figure 5.5. Secondly, it appears plausible that these values effectively capture

the genuine state of a team during the tournament. This is exemplified in cases

such as Liverpool, Manchester City, and Leicester City. The former two

teams engaged in a tremendous battle throughout the tournament, as evidenced by

the estimated mean coefficients crossing multiple times. Conversely, the latter team

experienced a remarkable resurgence during the concluding games of the season.

Regrettably, despite the model’s ability to provide a sort of aggregate measure, the

DIC for the new model surpasses that of the previous one, indicative of a decreased

goodness of fit. In conclusion, while the prospect of employing an aggregate measure

remains interesting, a preference is retained for the model incorporating distinct random

effects linked to attacking and defensive abilities. Furthermore, a re-examination of the

estimated marginal and joint distributions for the scored goals has been undertaken,

revealing outcomes of lesser quality compared to the previous case.

Figure 5.6: Observed vs Estimated probability of some interesting match outcomes (left). Observed vs Estimated

probability for goals difference (right).
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6 Bonus Section: Goals Difference

In the previous sections, my methodology primarily focused on directly modeling the

number of goals scored by both the home and away teams. This approach aimed

to discern the major influencing factors contributing to the goal-scoring dynamics.

However, an alternative perspective, as proposed by [11], involves considering the

variable of interest as the goal difference between the home and away teams. The

authors advocate for the use of the Skellam distribution, conceptualized as arising

from the difference between two random variables, each following a Poisson distribution.

Initially, I hesitated to adopt this approach due to the authors’ assertion that attempting

to model the goal difference precludes the simultaneous modeling of the two marginal

distributions, which constitutes a fundamental objective within the aim of this project.

Nevertheless, I have resolved to continue the analysis to conclude a comprehensive

exploration of various Bayesian techniques employed in modeling football outcomes 19.

Upon reflection, I discerned that an effective strategy involves the independent

modeling of both home team scored goals and the goal difference. This helps for the

derivation of the away team scored goals as the difference between the two aforementioned

distributions. This refined methodological approach holds the potential to enhance

the comprehensive understanding of the underlying dynamics influencing goal scoring

patterns in the context of the studied football matches.

Figure 6.1: Observed vs Estimated probability of the goals difference events using a Shifted Poisson with λ = 5.5 and

u = 5.

19It is worth noting that, in this report, I have not extensively discussed the potential application

of a Bivariate Poisson model. However, it is essential to acknowledge that such a model represents a

modest generalization of the frameworks elucidated in Section 3.
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In the attempt to model the goal difference (Dg) between home and away scored

goals, a departure from the approach proposed by [11] is contemplated. A fundamental

observation lies in the distinctive nature of the distribution governing goal difference;

while it bears resemblance to a Poisson distribution, it extends its support to negative

values (which it is not exhibited by the conventional Poisson distribution). To address

this peculiarity, a conceptualization is proposed: consider a transformed random

variable, Zg = Dg + µ, wherein µ serves as a location-shifting parameter. This

transformation is used to adhere to a Poisson distribution, denoted as P(λg). The

introduction of µ is needed in order to shift the support of Dg on a positive scale

(included zero). Furthermore, µ is not a proper parameter, but it can be fixed to a

reasonable value such that the support of the random variable Zg is proper defined.

In particular, I have fixed µ = 5, which is the minimum value attained by Dg through

the entire season.

P(Zg = zg) =
e−λgλ

Dg+u
g

(Dg + u)!
zg = 0, 1, . . .

Starting from the previous considerations, it is straightforward to define a proper

model to represent the situation, in fact a generalization of the model introduced by

[1] is needed. Denoting g = 1, . . . , 380 as a generic game and w = 1, . . . , 20 as a generic

team, the model can be formalized as follows:

• yg represents the number of goals scored by the home team in the g-th game;

• Dg represents the difference of goals scored by the home and away team in the

g-th game;

• yg, (Dg + µ)|θg,1, θg,2
C.I
= yg|θg,1 ·Dg + µ|θg,2;

• yg,1|θg,1 ∼ Poisson(θg,1) and Dg + µ|θg,2 ∼ Poisson(θg,2);

• θg,1 represents the scoring intensities of the home team while θg,2 can be interpreted

as the difference between the scoring intensities of the two involved teams;

•

log(θg,1) = µh + (atth[g] − defa[g])

log(θg,2) = µd + (atth[g] − atta[g]) + (defh[g] − defa[g])

The likelihood of the model can be written:

L (θ) = f
(
y1, . . . , y380|θ1,1, . . . , θ380,1

)
· f
(
D1 + µ, . . . , D380 + µ|θ1,2, . . . , θ380,2

)
i.d
=

380∏
g=1

f
(
yg|θg,1

)
· f
(
Dg + µ|θg,2

)
For the sake of brevity, priors distributions, as well as the posterior form, are not

specified again due to the fact they are the same as the model in Section 3. Again, a
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Gibbs Sampler is adopted due to the complex form of the joint posterior distribution

of the parameters.

It is evident that the random effects persist in their ability to effectively encapsulate

the effective ability of a team throughout the season, as delineated in Figure 6.2.

Notably, however, their influence has marginally decrease in comparison to antecedent

models. Furthermore, the discernible correlation between the aforementioned values of

the random effects and the final ranking of the team has attenuated, albeit remaining

subject to interpretation.

The evolution in parametrization precludes any discourse on a plausible home effect.

Instead, a deliberation on a potential ”away” effect can be done, encapsulating the

discrepancy between the two intercepts within the model. Precisely, the mean value for

this effect is computed as−1.28, accompanied by a 95% HPD interval of [−1.29,−1.12].

In particular, this is also in agreement with the ideas developed during the entire

project.

Figure 6.2: 95% HPD interval for offensive (left) and defensive random effects. Dots represent the average effect.

In addition to scrutinizing the estimated marginal distributions of home scored

goals, which shares analogous challenges with its predecessor, an insightful examination

pertains to elucidating the posterior predictive fit of goal differences. Notably, a

recurring pattern emerges wherein there is a propensity for overestimation in the

occurrence of draws. Despite this, the overall estimation demonstrates a decent

precision, although temporal considerations are not explicitly incorporated. In fact,

a comparative analysis between Figure 5.5 and 6.2 underscores the striking similarity

in the estimated proportions. However, a salient limitation of this model lies in

its assumption that the number of goals scored by the home team and the goal
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difference are uncorrelated. This oversimplification becomes evident in the context of

this modeling paradigm, in fact it is possible that the posterior predictive distribution

for the away scored goals attains negative values.

Figure 6.3: Observed vs Estimated probability of the goals difference events using the posterior predictive distribution.

While one might argue that the correlation between the number of goals scored by

the home and away teams is negligible, it becomes apparent that such an oversimplification

is untenable in this particular modeling framework. To address this inherent limitation,

a novel model can be formulated based on the Bivariate Poisson Distribution

2.This alternative model introduces an additional parameter to explicitly account for

the covariance between the two variables of interest, departing from the traditional

independent Poisson regression. Assuming log(θg,3) = γ, the joint distribution can be

expressed as follows:

f(yg, Dg + µ|θg,1, θg,2, θg,3) = e−(θg,1+θg,2+θg,3)
θ
yg
g,1θ

Dg+µ
g,2

yg!(Dg + µ)!

min(yg ,Dg+µ)∑
l=0

(
Dg + µ

l

)(
yg
l

)
l!

(
θg,3

θg,1θg,2

)l

It is straightforward the derivation of the likelihood function:

L (θ) = f
(
y1, . . . , y380, D1 + µ, . . . , D380 + µ|θ1,1, . . . , θ380,1, θ1,2, . . . , θ380,2, θ1,3, . . . , θ380,3

)
i.d
=

380∏
g=1

f
(
yg, Dg + µ|θg,1, θg,2, θg,3

)
Assuming a Gaussian prior distribution centered at 0 with a large variance for the

parameter γ, the joint posterior distribution can be easily established. For brevity, the

detailed calculations are omitted.
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Following the simulation, a discernible trend emerges, indicating a decrease significance

of random effects. Notably, these effects converge towards values near zero, with

small differentiations among them. Conversely, a noteworthy observation manifests

in the model’s tendency to estimate a correlation ranging approximately between

0.5 and 0.6 for the two variables of interest. This outcome implies that, within the

formulated modeling framework, the stochastic variability introduced by the random

effects become almost negligible, while the correlation parameter assumes an important

role in characterizing the interdependence between the analyzed variables.

Despite successfully addressing the issue of negative values in estimated away scored

goals, an examination of Figure 6.4 reveals a noteworthy observation: the posterior

predictive distribution associated with the goals difference, along with that linked to

home scored goals, demonstrates a tendency to adopt a more limited range of values.

This phenomenon implies an improvement in the interpretability of the results, but

a substantial reduction in predictive accuracy. In essence, the fundamental challenge

that must be addressed to enable the joint modeling of home scored goals and goals

difference revolves around striking a balance between the range of values assumed by

the latter and the presence of negative estimates in away scored goals.

Figure 6.4: Observed vs Estimated probability of the goals difference events using the posterior predictive distribution.
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7 Conclusion

Throughout the duration of this research project, various methodologies were explored

to address the challenge of explaining the number of goals scored in a football match.

Each model was crafted with unique characteristics, and a continuous effort was

made to enhance both their explanatory power and predictive accuracy. A systematic

progression was maintained, with each iteration building upon and refining its predecessor,

trying to upgrade all the features that were inefficient in the previous model.

Initially, the investigation began by replicating the model introduced by [1], resulting

in outcomes that were consistent and akin to the referenced work. Subsequently, an

attempt was made to extend the previous model by incorporating a Zero-Inflated

Poisson distribution to account for the count of 0 scored goals. Different combinations

of inflation factors were explored to estimate a team’s propensity to score zero goals,

whether playing at home or away. Despite achieving some interpretability gains, these

models proved to be excessively complex, leading to higher DIC values.

An intermediary phase in the investigation involved scrutinizing the variables that

held genuine significance and exerted a substantive influence on the goals scored by

the respective teams. Notably, my findings revealed that only temporal variables,

indicative of the overall temporal dynamics, and variables associated with the perceived

level of dangerousness possessed by offensive plays had an influence on the goal outcomes.

This outcome aligns with expectations, underscoring the pivotal role played by temporal

and dangerousness-related factors in shaping the goal-scoring dynamics of the two

teams.

The final attempt involved the introduction of a Dynamic model, inspired by the

concepts outlined in [20] and [15]. This approach aimed to capture the potential

influence of time on the offensive and defensive abilities. The results obtained demonstrated

the model’s capability to replicate a team’s offensive and defensive dynamics over the

course of a season. Noteworthy, however, is the importance of careful parameter

initialization, as it significantly influences their subsequent values during the time

series and further improvements can be made not considering the evolution matrix G

and the identity matrix.

An additional section was dedicated to the comprehensive analysis of goal differences,

with a deliberate departure from the theoretical framework proposed by[11]. Notably,

an empirical investigation was conducted, yielding intriguing outcomes. The primary

emphasis was placed on the concurrent modeling of goals scored at home and goal

differences, initially presupposing independence and subsequently incorporating dependencies.

In conclusion, the findings garnered from this analytical endeavor proved to be noteworthy

and contributory to the broader discourse.
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In summary, while there is space for further refinement in these models, significant

insights were gained. The identification of crucial variables for explaining match

outcomes was achieved, and an essential step forward was taken by reducing the

reliance on random effects. Each research question now presents a distinct pathway for

future exploration and improvement. Moreover, the presented project boasts complete

reproducibility, providing the capability to customize the code outlined in Appendix

B to suit different requirements. While it is noteworthy that the singular package

enabling the utilization of Bayesian tools for football analysis is [4], it is arguable that

my implementations offer greater flexibility for future applications.

7.1 AI Usage

I used DeepL to improve the fluency of the text and to check for some errors, while

I used ChatGpt 3.5 to fix some RJags bugs. However, the use of AI in the whole

project was minimal.
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A Plots Appendix

A.1 Frequency of goals scored at home in the top five leagues for the 2018/2019

season (Bundesliga, English Premier League, Ligue 1, Serie A, La Liga).

A.2 Frequency of goals scored away in the top five leagues for the 2018/2019 season.

i



A.3 Correlogram associated to the quantitative variables of the dataset.

A.4 Average taken and conceded corners per team (left). Average taken and conceded

shots per team (right). The two dotted lines represent the average effects between

the teams.

ii



A.5 Average yellow and red cards per team (left). Average committed and incurred

fouls per team (right). The two dotted lines represent the average effect between

the teams.

A.6 Average home red cards vs average home scored goals (left). Average away red

cards vs average away scored goals (right).
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A.7 Traceplot of the deviance for all the models. The dotted red line represents the

average value of the deviance.
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A.8 Summary statistics for the parameters of the first model plus convergence diagnostics.

Param Median LB UB R̂ ESS1 ESS2

att1 0.21 −0.04 0.44 1.004 900 900

att2 −0.17 −0.45 0.09 1.001 723.9 900

att3 0.08 −0.15 0.33 1.008 900 900

att4 −0.32 −0.58 0.00 1.002 900 900

att5 −0.64 −0.98 −0.31 1.001 900 900

att6 0.01 −0.24 0.25 1.004 900 900

att7 −0.09 −0.36 0.16 1.001 900 900

att8 0.49 0.27 0.70 1.002 900 900

att9 −0.11 −0.38 0.14 1.004 900 900

att10 0.32 0.10 0.54 1.001 900 790.5

att11 −0.32 −0.63 −0.06 1.003 900 900

att12 0.04 −0.21 0.28 1.006 900 900

att13 −0.01 −0.25 0.24 1.002 900 900

att14 0.24 0.02 0.47 1.001 900 900

att15 0.01 −0.24 0.24 1.002 785.03 900

att16 0.17 −0.06 0.38 1.001 900 900

att17 −0.11 −0.38 0.15 1.001 900 900

att18 0.56 0.34 0.75 1.001 900 900

att19 −0.31 −0.60 −0.05 1.002 487.5 743.9

att20 −0.01 −0.26 0.24 1.004 900 631.8

def1 0.04 −0.19 0.29 1.001 900 900

def2 −0.07 −0.33 0.18 1.02 900 900

def3 0.27 0.05 0.49 1.003 900 900

def4 0.39 0.19 0.62 1.01 900 900

def5 0.32 0.12 0.55 1.002 900 900

def6 0.11 −0.11 0.35 1.004 900 900

def7 −0.10 −0.35 0.17 1.001 469.43 900

def8 −0.61 −0.98 −0.27 1.002 734.14 900

def9 0.19 −0.03 0.41 1.003 900 900

def10 0.003 −0.25 0.22 1.004 900 900

def11 0.24 0.03 0.46 1.003 900 900

def12 −0.10 −0.35 0.14 1.002 900 900

def13 −0.06 −0.32 0.18 1.001 900 900

def14 −0.22 −0.48 0.06 1.004 900 900

def15 0.05 −0.19 0.30 1.003 900 900

def16 −0.22 −0.52 0.03 1.005 900 900

def17 0.23 0.01 0.46 1.001 900 900

def18 −0.56 −0.92 −0.25 1.001 900 900

def19 0.11 −0.13 0.33 1.001 900 900

def20 0.02 −0.22 0.26 1.001 758.8 900

home 0.36 0.28 0.45 1.008 900 900
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A.9 summary statistics for the parameters of the second model plus convergence

diagnostics.

Param Median LB UB R̂ ESS1 ESS2

att1 -0.0179 -0.1670 0.1127 1.0019 900 900

att2 -0.0120 -0.1487 0.1411 1.0013 900 900

att3 0.0552 -0.0735 0.2106 1.0047 678.58 900

att4 0.0015 -0.1601 0.1444 1.0012 900 750.11

att5 -0.0473 -0.2115 0.0889 1.0013 900 881.23

att6 0.0220 -0.1236 0.1596 1.0016 900 900

att7 -0.0169 -0.1524 0.1303 1.0025 900 900

att8 -0.0402 -0.1679 0.0877 1.0023 900 900

att9 0.0092 -0.1322 0.1556 1.0069 900 900

att10 0.0275 -0.1108 0.1642 1.0021 809.34 900

att11 -0.0137 -0.1952 0.1222 1.0016 900 900

att12 0.0253 -0.1136 0.1744 1.0030 900 900

att13 -0.0102 -0.1552 0.1189 1.0012 900 900

att14 -0.0039 -0.1385 0.1249 1.0025 797.57 900

att15 0.0004 -0.1538 0.1281 1.0096 900 900.

att16 -0.0096 -0.1477 0.1331 1.0018 900 900

att17 0.0180 -0.1199 0.1691 1.0071 900 900

att18 0.0079 -0.1299 0.1312 1.0081 900 900

att19 -0.0211 -0.1697 0.1272 1.0023 900 900

att20 0.0283 -0.1042 0.1807 1.0011 900 763.76

def1 0.0294 -0.1129 0.1710 1.0012 900 900

def2 -0.0127 -0.1544 0.1230 1.0028 900 900

def3 0.0168 -0.1170 0.1561 1.0011 593.75 900

def4 0.0246 -0.1138 0.1622 1.0011 900 900

def5 0.0271 -0.1096 0.1584 1.0019 900 900

def6 0.0147 -0.1230 0.1547 1.0052 810.78 900

def7 -0.0190 -0.1418 0.1286 1.0013 900 900

def8 -0.0591 -0.2378 0.0807 1.0037 900 900

def9 0.0129 -0.1215 0.1395 1.0025 900 900

def10 0.0178 -0.1223 0.1589 1.0025 900 900

def11 0.0062 -0.1351 0.1389 1.0039 900 900

def12 -0.0150 -0.1559 0.1142 1.0016 900 900

def13 -0.0043 -0.1392 0.1295 1.0011 900 900

def14 -0.0123 -0.1680 0.1231 1.0051 900 900

def15 0.0183 -0.1159 0.1583 1.0011 900 900

def16 -0.0141 -0.1643 0.1351 1.0046 900 792.04

def17 0.0164 -0.1183 0.1456 1.0017 615.5 900

def18 -0.05 -0.22 0.09 1.001 900 900

def19 0.0163 -0.1118 0.1557 1.0015 900 900

def20 -0.0078 -0.1424 0.1191 1.0019 900 900

b
(1)
0 0.1998 0.0629 0.3263 1.0016 900 900

b
(2)
0 0.2181 0.0699 0.3883 1.0076 900 900

β1 0.11 0.01 0.20 1.002 900 737.4

β2 0.42 0.31 0.53 1.001 900 900

β3 -0.44 -0.53 -0.35 1.002 900 900

β4 0.0003 −1.3× 10−04 8.6× 10−04 1.001 900 900
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A.10 Summary statistics for the parameters of the third model plus convergence

diagnostics.

Param Median LB UB R̂ ESS1 ESS2

att1 0.216 -0.008 0.440 1.002 900 900

att2 -0.173 -0.445 0.115 1.001 900 900

att3 0.094 -0.140 0.359 1.002 900 900

att4 -0.326 -0.623 -0.038 1.002 900 900

att5 -0.634 -1.015 -0.298 1.006 900 900

att6 0.019 -0.241 0.259 1.002 900 766.1

att7 -0.078 -0.319 0.212 1.001 655.4 900

att8 0.489 0.268 0.680 1.003 900 900

att9 -0.108 -0.377 0.155 1.002 900 900

att10 0.314 0.094 0.527 1.014 900 900

att11 -0.334 -0.656 -0.046 1.002 677.7 900

att12 0.037 -0.216 0.275 1.002 900 849.7

att13 -0.010 -0.260 0.250 1.001 900 900

att14 0.229 -0.020 0.452 1.002 900 823.3

att15 0.015 -0.233 0.252 1.003 900 900

att16 0.171 -0.064 0.413 1.001 900 900

att17 -0.114 -0.349 0.177 1.003 900 900

att18 0.548 0.330 0.742 1.012 900 900

1att19 -0.318 -0.612 -0.038 1.001 900 900

att20 -0.007 -0.262 0.246 1.002 900 900

def1 0.047 -0.237 0.262 1.001 900 900

def2 -0.074 -0.344 0.174 1.011 900 900

def3 0.275 0.049 0.514 1.001 900 900

def4 0.390 0.165 0.588 1.002 900 900

def5 0.319 0.093 0.525 1.001 900 900

def6 0.111 -0.130 0.346 1.001 900 900

def7 -0.116 -0.362 0.152 1.003 900 900

def8 -0.606 -0.985 -0.301 1.002 900 900

def9 0.203 -0.025 0.444 1.002 725.3 900

def10 -0.005 -0.249 0.252 1.001 900 900

def11 0.248 0.023 0.489 1.001 900 900

def12 -0.098 -0.345 0.164 1.002 900 900

def13 -0.067 -0.313 0.176 1.001 900 900

def14 -0.213 -0.490 0.057 1.005 900 900

def15 0.046 -0.194 0.281 1.002 900 900

def16 -0.228 -0.500 0.060 1.006 816.7 900

def17 0.243 -0.013 0.448 1.002 900 900

def18 -0.565 -0.919 -0.252 1.001 765.5 900

def19 0.114 -0.113 0.356 1.004 900 900

def20 0.028 -0.217 0.282 1.001 900 900

p1 1.26× 10−2 6.2× 10−6 4.5× 10−2 1.001 801.9 900

p2 9.1× 10−3 9.4× 10−6 3.4× 102 1.001 900 900

home 0.38 0.28 0.46 1.004 900 900
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A.11 Summary statistics for the parameters of the modified zero-inflated model with

Gamma hyperprior plus convergence diagnostics.

Param Median LB UB R̂ ESS1 ESS2

att1 0.22 -0.04 0.43 1.003 900 900

att2 -0.15 -0.48 0.10 1.007 900 900

att3 0.11 -0.12 0.37 1.002 900 900

att4 -0.32 -0.63 -0.04 1.001 900 900

att5 -0.63 -0.98 -0.29 1.002 900 900

att6 0.012 -0.25 0.28 1.002 900 900

att7 -0.08 -0.34 0.19 1.001 900 900

att8 0.46 0.26 0.68 1.001 900 900

att9 -0.11 -0.39 0.14 1.003 900 900

att10 0.29 0.08 0.51 1.011 900 900

att11 -0.32 -0.62 -0.03 1.002 900 900

att12 0.03 -0.22 0.29 1.002 900 900

att13 0.001 -0.25 0.27 1.001 900 900

att14 0.23 -0.02 0.48 1.002 900 900

att15 0.02 -0.23 0.28 1.001 900 900

att16 0.18 -0.07 0.41 1.001 894.7 900

att17 -0.12 -0.38 0.15 1.003 706.6 900

att18 0.52 0.32 0.73 1.004 900 900

att19 -0.32 -0.63 -0.03 1.001 900 900

att20 0.01 -0.23 0.30 1.001 900 900

def1 0.046 -0.218 0.301 1.001 900 900

def2 -0.07 -0.369 0.162 1.002 900 900

def3 0.283 0.064 0.508 1.001 900 900

def4 0.388 0.179 0.628 1.004 839.587 900

def5 0.31 0.086 0.532 1.001 798.018 900

def6 0.099 -0.132 0.342 1.001 900 900

def7 -0.117 -0.367 0.157 1.001 900 691.952

def8 -0.61 -0.974 -0.273 1.003 900 900

def9 0.199 -0.03 0.437 1.002 900 900

def10 -0.017 -0.257 0.235 1.002 900 813.338

def11 0.262 0.028 0.493 1.002 900 900

def12 -0.093 -0.347 0.166 1.013 900 900

def13 -0.069 -0.315 0.205 1.001 900 900

def14 -0.221 -0.506 0.066 1.001 900 900

def15 0.053 -0.19 0.288 1.003 793.179 900

def16 -0.222 -0.514 0.05 1.001 900 900

def17 0.241 -0.009 0.467 1.001 900 900

def18 -0.564 -0.915 -0.219 1.003 777.209 900

def19 0.102 -0.125 0.336 1.004 900 900

def20 0.022 -0.244 0.267 1.003 900 900

p1,1 0.059 0.007 0.129 1.001 900 873.334

p1,2 0.062 0.005 0.13 1.001 900 900

p1,3 0.056 0.002 0.122 1.003 900 900

p1,4 0.057 0.001 0.127 1.004 900 900

p1,5 0.057 0.001 0.122 1.009 900 900

p1,6 0.056 0 0.118 1.005 900 900

p1,7 0.058 0.001 0.122 1.006 900 900
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p1,8 0.046 0 0.103 1.013 900 900

p1,9 0.051 0.001 0.111 1.012 900 900

p1,10 0.045 0 0.103 1.003 900 900

p1,11 0.057 0 0.122 1.003 900 900

p1,12 0.049 0 0.112 1.002 900 900

p1,13 0.061 0.004 0.135 1.003 780.887 900

p1,14 0.054 0 0.114 1.001 900 900

p1,15 0.058 0.001 0.125 1.003 900 900

p1,16 0.054 0.002 0.119 1.01 900 799.374

p1,17 0.051 0 0.113 1.005 900 900

p1,18 0.044 0 0.101 1.017 900 900

p1,19 0.056 0.004 0.123 1.001 900 900

p1,20 0.066 0.006 0.144 1.001 900 900

p2,1 0.043 0.001 0.095 1.001 900 900

p2,2 0.048 0 0.105 1.003 900 900

p2,3 0.053 0.001 0.115 1.001 743.516 900

p2,4 0.049 0.002 0.106 1.006 900 900

p2,5 0.049 0.002 0.11 1.001 900 900

p2,6 0.047 0 0.105 1.002 900 900

p2,7 0.048 0.001 0.105 1.003 900 900

p2,8 0.044 0 0.099 1.003 900 900

p2,9 0.047 0.003 0.106 1.003 900 900

p2,10 0.044 0 0.102 1.001 900 900

p2,11 0.052 0 0.112 1.001 900 900

p2,12 0.051 0 0.113 1.001 900 900

p2,13 0.041 0 0.097 1.01 900 900

p2,14 0.044 0 0.096 1.001 900 726.16

p2,15 0.052 0.001 0.112 1.001 900 673.38

p2,16 0.051 0.002 0.12 1.005 900 670.529

p2,17 0.052 0.001 0.115 1.001 900 900

p2,18 0.043 0.002 0.096 1.001 815.97 900

p2,19 0.05 0 0.106 1.001 900 864.431

p2,20 0.043 0 0.095 1.001 900 900

home 0.405 0.313 0.498 1.002 900 900

ix



A.12 Summary statistics for the parameters of the modified zero-inflated model without

hyperprior plus convergence diagnostics.

Param Median LB UB R̂ ESS1 ESS2

att1 0.211 -0.043 0.463 1.007 900 900

att2 -0.136 -0.422 0.161 1.001 900 900

att3 0.119 -0.15 0.395 1.006 812.388 900

att4 -0.311 -0.655 -0.03 1.002 900 900

att5 -0.602 -1.001 -0.254 1.003 900 900

att6 0.007 -0.272 0.244 1.001 547.34 900

att7 -0.076 -0.377 0.179 1.009 900 900

att8 0.432 0.215 0.649 1.008 734.728 900

att9 -0.138 -0.419 0.134 1.004 900 900

att10 0.262 0.043 0.494 1.001 900 817.845

att11 -0.282 -0.582 0.045 1.001 900 900

att12 0.018 -0.252 0.259 1.001 900 900

att13 0.003 -0.269 0.271 1.001 900 900

att14 0.193 -0.063 0.414 1.004 900 900

att15 0.046 -0.238 0.329 1.004 900 900

att16 0.171 -0.077 0.42 1.002 900 900

att17 –0.121 -0.416 0.136 1.004 900 900

att18 0.488 0.289 0.698 1.001 900 900

att19 -0.321 -0.613 -0.013 1.001 900 900

att20 0.056 -0.218 0.331 1.003 900 900

def1 0.037 -0.234 0.258 1.002 900 900

def2 -0.07 -0.328 0.223 1.001 727.183 900

def3 0.28 0.043 0.522 1.002 900 900

def4 0.377 0.142 0.592 1.001 900 900

def5 0.295 0.074 0.52 1.001 900 900

def6 0.098 -0.141 0.33 1.003 900 900

def7 -0.11 -0.367 0.163 1.001 900 900

def8 -0.586 -0.963 -0.251 1.001 900 900

def9 0.204 -0.035 0.456 1.006 900 900

def10 -0.03 -0.287 0.231 1.001 900 735.873

def11 0.286 0.045 0.541 1.005 900 900

def12 -0.076 -0.358 0.172 1.001 900 900

def13 -0.066 -0.368 0.18 1.001 900 900

def14 -0.212 -0.482 0.09 1.002 900 900

def15 0.03 -0.21 0.279 1.004 900 900

def16 -0.206 -0.495 0.079 1.003 900 900

def17 0.243 0.015 0.487 1.001 900 900

def18 -0.56 -0.938 -0.232 1.004 900 900

def19 0.099 -0.163 0.33 1.001 805.392 900

def20 0.03 -0.224 0.291 1.003 900 900

p1,1 0.129 0 0.352 1.004 900 900

p1,2 0.161 0 0.383 1.003 900 900

p1,3 0.108 0.001 0.298 1.01 900 900

p1,4 0.115 0 0.324 1.001 900 900

p1,5 00.16 0 0.445 1.001 900 792.48

p1,6 0.104 0.001 0.29 1.001 900 900

p1,7 0.122 0 0.325 1.001 900 900
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p1,8 0.042 0 0.157 1.002 900 774.078

p1,9 0.063 0 0.221 1.001 900 814.564

p1,10 0.041 0 0.16 1.001 900 769.881

p1,11 0.13 0 0.356 1.003 900 900

p1,12 0.056 0 0.201 1.001 900 900

p1,13 0.185 0 0.411 1.001 900 900

p1,14 0.076 0 0.239 1.005 837.682 865.168

p1,15 0.148 0 0.371 1.003 900 695.521

p1,16 0.09 0 0.25 1.001 900 811.68

p1,17 0.056 0 0.202 1.006 723.493 781.879

p1,18 0.035 0 0.138 1.002 900 900

p1,19 0.096 0 0.298 1.001 844.614 900

p1,20 0.27 0.002 0.504 1.005 810.002 900

p2,1 0.048 0 0.179 1.005 499.579 900

p2,2 0.11 0 0.328 1.002 900 900

p2,3 0.18 0 0.419 1.001 900 867.362

p2,4 0.141 0 0.414 1.002 900 900

p2,5 0.138 0 0.407 1.002 900 900

p2,6 0.092 0 0.289 1.001 900 900

p2,7 0.091 0 0.301 1.002 900 900

p2,8 0.054 0 0.199 1.002 900 900

p2,9 0.109 0 0.346 1.007 900 900

p2,10 0.058 0 0.22 1.001 900 900

p2,11 0.209 0 0.489 1.001 900 900

p2,12 0.132 0 0.36 1.02 900 734.865

p2,13 0.042 0 0.175 1.008 900 850.262

p2,14 0.054 0 0.201 1.008 900 900

p2,15 0.173 0 0.42 1.003 803.51 900

p2,16 0.137 0 0.369 1.002 900 900

p2,17 0.168 0 0.435 1.001 900 900

p2,18 0.046 0 0.175 1.001 900 817.518

p2,19 0.107 0 0.337 1.004 900 900

p2,20 0.055 0 0.2 1.001 900 900

home 0.451 0.362 0.542 1.004 900 900
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B Codes Appendix

• Bayesian Hierarchical Model without covariates

1 cat(model{

2

3 for (g in 1: ngames) {

4

5 y1[g] ~ dpois(theta[g,1])

6 y2[g] ~ dpois(theta[g,2])

7 # Predictive distribution

8 ynew[g,1] ~ dpois(theta[g,1])

9 ynew[g,2] ~ dpois(theta[g,2])

10

11 log(theta[g,1]) <- home + att[home_team[g]] + def[away_team[g]]

12 log(theta[g,2]) <- att[away_team[g]] + def[home_team[g]]

13 }

14

15 home ~ dnorm (0 ,0.0001)

16

17 for (t in 1: nteams){

18 att.star[t] ~ dnorm(mu.att ,tau.att)

19 def.star[t] ~ dnorm(mu.def ,tau.def)

20 att[t] <- att.star[t] - mean(att.star [])

21 def[t] <- def.star[t] - mean(def.star [])

22 }

23

24 mu.att ~ dnorm (0 ,0.0001)

25 mu.def ~ dnorm (0 ,0.0001)

26 tau.att ~ dgamma (.01 ,.01)

27 tau.def ~ dgamma (.01 ,.01)

28 }", file="project_model_1_jags.txt",fill=TRUE)

• Bayesian Hierarchical Model with covariates

1 cat("model{

2 for (g in 1: ngames) {

3 y1[g] ~ dpois(theta[g,1])

4 y2[g] ~ dpois(theta[g,2])

5

6 ynew[g,1] ~ dpois(theta[g,1])

7 ynew[g,2] ~ dpois(theta[g,2])

8

9 log(theta[g,1]) <-b0[attendance[g]] + beta1 * RSC_h[g]+ beta2*RDC_a[g] +

10 beta3 * QO_h[g]+ beta4*ELO_h[g]+ att[home_team[g]] + def[away_team[g]]

11 log(theta[g,2]) <- beta1*RSC_a[g] + beta2*RDC_h[g] + beta3*QO_a[g] +

12 beta4 * ELO_a[g] + att[away_team[g]] + def[home_team[g]]

13 }

14 for (t in 1: nteams){

15 att.star[t] ~ dnorm(mu.att ,tau.att)

16 def.star[t] ~ dnorm(mu.def ,tau.def)

17 att[t] <- att.star[t] - mean(att.star [])

18 def[t] <- def.star[t] - mean(def.star [])

19 }

20

21 mu.att ~ dnorm (0 ,0.0001)

22 mu.def ~ dnorm (0 ,0.0001)

23 tau.att ~ dgamma (.01 ,.01)
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24 tau.def ~ dgamma (.01 ,.01)

25

26 sigma_0 ~ dgamma (.01 ,.01)

27 for (j in 1:2){

28 b0[j] ~ dnorm(0,sigma_0)

29

30 }

31 beta1 ~ dnorm (0 ,0.0001)

32 beta2 ~ dnorm (0 ,0.0001)

33 beta3 ~ dnorm (0 ,0.0001)

34 beta4 ~ dnorm (0 ,0.0001)

35 }", file="covariates_jags.txt",fill=TRUE)

• Zero-Inflated Bayesian Hierarchical model

1 cat("model{

2 for (g in 1: ngames) {

3 y1[g] ~ dpois(theta1[g,1])

4 y2[g] ~ dpois(theta2[g,2])

5

6 ynew[g,1] ~ dpois(theta1[g,1])

7 ynew[g,2] ~ dpois(theta2[g,2])

8

9 theta[g,1] <- exp(home + att[home_team[g]] + def[away_team[g]])

10 theta[g,2] <- exp(att[away_team[g]] + def[home_team[g]])

11 z[g] ~ dbern(psi)

12 z2[g] ~ dbern(psi2)

13 theta1[g,1] <- z[g] * theta[g, 1] + 0.00001

14 theta2[g,2] <- z2[g] * theta[g, 2] + 0.00001

15 }

16

17 home ~ dnorm (0 ,0.0001)

18 for (t in 1: nteams){

19 att.star[t] ~ dnorm(mu.att ,tau.att)

20 def.star[t] ~ dnorm(mu.def ,tau.def)

21 att[t] <- att.star[t] - mean(att.star [])

22 def[t] <- def.star[t] - mean(def.star [])

23 }

24

25 mu.att ~ dnorm (0 ,0.0001)

26 mu.def ~ dnorm (0 ,0.0001)

27 tau.att ~ dgamma (.01 ,.01)

28 tau.def ~ dgamma (.01 ,.01)

29 psi ~ dunif(0, 1)

30 psi2 ~ dunif(0, 1)

31 }", file="project_model_3_jags.txt",fill=TRUE)

• Modified Zero-Inflated Bayesian Hierarchical model using Gamma and

Half Cauchy hyperpriors

1 cat("model{

2

3 for (g in 1: ngames) {

4

5 y1[g] ~ dpois(theta1[g,1])
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6 y2[g] ~ dpois(theta2[g,2])

7

8 ynew[g,1] ~ dpois(theta1[g,1])

9 ynew[g,2] ~ dpois(theta2[g,2])

10

11 theta[g,1] <- exp(home + att[home_team[g]] + def[away_team[g]])

12 theta[g,2] <- exp(att[away_team[g]] + def[home_team[g]])

13 z[g] ~ dbern(psi[home_team[g]])

14 z2[g] ~ dbern(psi2[away_team[g]])

15 theta1[g,1] <- (1 - z[g]) * theta[g, 1] + 0.00001

16 theta2[g,2] <- (1 - z2[g]) * theta[g, 2] + 0.00001

17

18 }

19 home ~ dnorm (0 ,0.0001)

20 for (t in 1: nteams){

21 att.star[t] ~ dnorm(mu.att ,tau.att)

22 def.star[t] ~ dnorm(mu.def ,tau.def)

23 att[t] <- att.star[t] - mean(att.star [])

24 def[t] <- def.star[t] - mean(def.star [])

25 psi[t] ~ dnorm(mu.p1, tau.p1) T(0, 1)

26 psi2[t] ~ dnorm(mu.p2, tau.p2) T(0,1)

27 }

28

29 mu.att ~ dnorm (0 ,0.0001)

30 mu.def ~ dnorm (0 ,0.0001)

31 tau.att ~ dgamma (.01 ,.01)

32 tau.def ~ dgamma (.01 ,.01)

33 mu.p1 ~ dbeta(1, 1)

34 mu.p2 ~ dbeta(1 ,1)

35 tau.p1 ~ dgamma (0.001 ,0.001)

36 tau.p2 ~ dgamma (0.001 ,0.001)

37

38 #### Half Cauchy parametrization #####

39 #tau.p1 ~ dt(0, 30, 1)T(0, )

40 #tau.p2 ~ dt(0, 30, 1)T(0, )

41

42 }", file="project_tanti_p.txt",fill=TRUE)

• Modified Zero-Inflated Bayesian Hierarchical model results without

hyperpriors

1 cat("model{

2

3 for (g in 1: ngames) {

4

5 y1[g] ~ dpois(theta1[g,1])

6 y2[g] ~ dpois(theta2[g,2])

7

8 ynew[g,1] ~ dpois(theta1[g,1])

9 ynew[g,2] ~ dpois(theta2[g,2])

10

11 theta[g,1] <- exp(home + att[home_team[g]] + def[away_team[g]])

12 theta[g,2] <- exp(att[away_team[g]] + def[home_team[g]])

13 z[g] ~ dbern(psi[home_team[g]])

14 z2[g] ~ dbern(psi2[away_team[g]])

15 theta1[g,1] <- (1 - z[g]) * theta[g, 1] + 0.00001

16 theta2[g,2] <- (1 - z2[g]) * theta[g, 2] + 0.00001

17
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18 }

19 home ~ dnorm (0 ,0.0001)

20 for (t in 1: nteams){

21 att.star[t] ~ dnorm(mu.att ,tau.att)

22 def.star[t] ~ dnorm(mu.def ,tau.def)

23 att[t] <- att.star[t] - mean(att.star [])

24 def[t] <- def.star[t] - mean(def.star [])

25 psi[t] ~ dbeta(1, 1)

26 psi2[t] ~ dbeta(1, 1)

27 }

28 mu.att ~ dnorm (0 ,0.0001)

29 mu.def ~ dnorm (0 ,0.0001)

30 tau.att ~ dgamma (.01 ,.01)

31 tau.def ~ dgamma (.01 ,.01)

32 }", file="project_model_4_jags.txt",fill=TRUE)

• Explanatory Model

1 cat("model{

2 for (g in 1: ngames) {

3 # Observed number of goals scored by each team

4 y1[g] ~ dpois(theta[g,1])

5 y2[g] ~ dpois(theta[g,2])

6

7 # Predictive distribution for the number of goals scored

8 ynew[g,1] ~ dpois(theta[g,1])

9 ynew[g,2] ~ dpois(theta[g,2])

10

11 log(theta[g, 1]) <- X1[g, ]%*%Beta1

12 log(theta[g, 2]) <- X2[g, ]%*%Beta2

13

14 }

15

16 tau ~ dgamma (0.1, 0.1)

17 tau2 ~ dgamma (0.1, 0.1)

18 sigma <- 1/tau

19 sigma2 <- 1/tau2

20 V1 <- sigma*(n)*D1[1:12, 1:12]

21 V2 <- sigma2*(n)*D2[1:11, 1:11]

22

23 m <- rep(0, 12)

24 m2 <- rep(0, 11)

25 Beta1 ~ dmnorm.vcov(m, V1)

26 Beta2 ~ dmnorm.vcov(m2, V2)

27

28 }", file = "p.txt", fill = TRUE)

• Dynamic Model

1 cat("model{

2

3 for (t in 1:T) {

4 for (g in 1:10){

5

6 y1[t,g] ~ dpois(theta1[t, g])

7 y2[t,g] ~ dpois(theta2[t, g])
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8

9 ynew1[t, g] ~ dpois(theta1[t, g])

10 ynew2[t, g] ~ dpois(theta2[t, g])

11

12 log(theta1[t, g]) <- home + att[home_team[g + (t -1)*10], t]

13 + def[away_team[g + (t - 1)*10], t]

14 log(theta2[t, g]) <- away + att[away_team[g + (t - 1)*10], t]

15 + def[home_team[g + (t - 1)*10], t]

16 }

17 }

18

19 home ~ dnorm(0, 0.001)

20 away ~ dnorm(0, 0.001)

21

22

23 S0 <- ((n*sigma_0)/(n-1))*(I + i)

24 S00 <- inverse(S0)

25 m0 <- rep(0, n-1)

26

27 ########## attack parameters

28 c0 ~ dmnorm(m0, S00)

29 c1 <- c(c0, 0)

30 u0 <- J%*%c1

31 att0 <- m_att + u0

32

33 S1 <- ((n*sigma)/(n-1))*(I + i)

34 S11 <- inverse(S1)

35 c2 ~ dmnorm(m0, S11)

36 c3 <- c(c2, 0)

37 u1 <- J%*%c3

38 att [1:20 ,1] <- att0 + u1

39

40

41 def0 <- m_def + u0

42

43 d2 ~ dmnorm(m0, S11)

44 d3 <- c(d2, 0)

45 uu1 <- J%*%d3

46 def [1:20 ,1] <- def0 + uu1

47

48 for (t in 2:T){

49

50 c_t[1:19,t] ~ dmnorm(m0 , S11)

51 c_2t[1:20, t] <- c(c_t[1:19, t], 0)

52 u[1:20 , t] <- J %*% c_2t[1:20, t]

53 att [1:20 ,t] <- att[1:20,t-1] + u[1:20, t]

54

55 d_t[1:19,t] ~ dmnorm(m0 , S11)

56 d_2t[1:20, t] <- c(d_t[1:19, t], 0)

57 uu3 [1:20 , t] <- J %*% d_2t[1:20, t]

58 def [1:20 ,t] <- def[1:20,t-1] + uu3[1:20, t]

59

60 }

61

62 sigma ~ dgamma (3.6, 600)

63 sigma_0 <- 0.003

64 }", file="DGLM4.txt",fill=TRUE)
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• Bonus Section

1 cat("model{

2 for (g in 1: ngames) {

3

4 y1[g] ~ dpois(theta[g,1])

5 y2[g] ~ dpois(theta[g,2])

6

7 ynew[g,1] ~ dpois(theta[g,1])

8 ynew[g,2] ~ dpois(theta[g,2])

9

10 ynew2[g,1] <- ynew[g,1]

11 ynew2[g,2] <- ynew[g,2] - u

12

13

14 log(theta[g,1]) <- home + att[home_team[g]] - def[away_team[g]]

15 log(theta[g,2]) <- diff + (att[home_team[g]]- def[away_team[g]])

16 + (-att[away_team[g]]+ def[home_team[g]])

17 }

18

19 home ~ dnorm (0 ,0.0001)

20 diff ~ dnorm (0 ,0.0001)

21 for (t in 1: nteams){

22 att.star[t] ~ dnorm(0, tau.att)

23 def.star[t] ~ dnorm(0, tau.def)

24 att[t] <- att.star[t] - mean(att.star [])

25 def[t] <- def.star[t] - mean(def.star [])

26 }

27

28 tau.att ~ dgamma (0.1 ,0.1)

29 tau.def ~ dgamma (0.1 ,0.1)

30 }", file="project_model_1_jags.txt",fill=TRUE)

• Bonus Section: Bivariate Poisson

1 cat("model{

2

3 for (g in 1: ngames) {

4

5 ynew[g,1] ~ dpois(theta[g,1])

6 ynew[g,2] ~ dpois(theta[g,2])

7 ynew[g,3] ~ dpois(theta[g,3])

8

9 ynew2[g,1] <- ynew[g,1]

10 ynew2[g,2] <- ynew[g,2] - u

11

12 for (i in 1:(z[g] + 1)){

13 summ[g, i] <- exp(logfact(y1[g]) - logfact(i- 1) - logfact(y1[g] - i + 1)

14 + logfact(y2[g]) - logfact(i - 1) - logfact(y2[g] - i + 1) + (i - 1)

15 *log(theta[g, 3]) - (i -1)*log(theta[g, 1]) - (i - 1)*log(theta[g, 2])

16 + logfact(i- 1))

17 }

18

19 sum2[g] <- sum(summ[g, 1:(z[g] + 1)])

20 L[g] <- exp(-(theta[g, 1] + theta[g, 2] + theta[g, 3]))

21 * ((pow(theta[g, 1], y1[g]))/exp(logfact(y1[g])))

22 * (pow(theta[g, 2], y2[g])/exp(logfact(y2[g]))) *sum2[g]

23 ones[g] ~ dbern(L[g])

24 log(theta[g,1]) <- mu + home + att[home_team[g]] - def[away_team[g]]
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25 log(theta[g,2]) <- mu + (att[home_team[g]] - att[away_team[g]])

26 + (def[home_team[g]] - def[away_team[g]])

27 log(theta[g, 3]) <- const

28 }

29

30 home ~ dnorm (0 ,0.0001)

31 mu ~ dnorm (0 ,0.0001)

32 const ~ dnorm (0 ,0.0001)

33

34 for (t in 1: nteams){

35 att.star[t] ~ dnorm(0, tau.att)

36 def.star[t] ~ dnorm(0, tau.def)

37 att[t] <- att.star[t] - mean(att.star [])

38 def[t] <- def.star[t] - mean(def.star [])

39 }

40 tau.att ~ dgamma (0.1 ,0.1)

41 tau.def ~ dgamma (0.1 ,0.1)

42 }", file="pro.txt",fill=TRUE)
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